QIBEBT-IR  > 单细胞中心组群
大鼠模型中致龋过程口腔微生物组的计算分析
其他题名生物化工
王险
导师口腔菌群,龋病,大鼠模型,454焦磷酸测序,随机森林机器学习方法
2016-05
学位授予单位中国科学院大学
学位授予地点北京
学位专业龋齿被认为是人类最普遍的感染性疾病之一,并造成沉重的经济负担。其发病主要特点是具有渐进性和不可逆性,因此针对龋病的预防策略是当今龋病研究的重点。前期通过人群实验,本团队发现儿童新发龋齿能够通过口腔菌群进行预测,这是首次证明人体微生物组能被用于预测慢性病,因此具有重要的理论和实践意义。但是在人群实验中难以精确地控制个体的环境和行为,从而导致该预测模型的机制难以得到更深入的诠释。大鼠龋齿模型不但可在真实环境中模拟人口腔龋病的发生和发展过程,而且允许施加各种人为龋病病因因素的直接作用,从而有利于在龋病发生发展过程中菌群动态变化特征的纵向追踪甚至干预。因此大鼠龋齿模型对于基于微生物组的龋齿风险评估方法探索和机制研究具有重要的意义。但是大鼠龋齿致病过程中微生物组动态变化研究尚未见报导。 为了考察龋病发生发展过程中口腔菌群动态变化在大鼠模型和在人群中的联系和区别,本研究采用454焦磷酸测序技术和多元统计分析手段,纵向监测了57只鼠龄为21天的SPF级SD大鼠在12周内的口腔菌群变化。其中27只SD大鼠一直保持健康,另一组30只SD大鼠经历健康到龋病的变化过程。第一,通过分析菌群变异的影响因素,本研究发现年龄因素和状态因素是影响菌群变异的关键因素,且不同分类水平的菌群数据对菌群变异因素分析有强烈影响。第二,在健康组大鼠口腔菌群存在一个与大鼠年龄相关的发展趋势,而这一趋势在龋病组大鼠口腔菌群中是被抑制的。另外,龋病发生阶段的大鼠口腔菌群群落变化与龋病程度的相关性比龋病进展阶段的高。第三,通过区分年龄相关的OTUs和龋病状态相关的OTUs,利用龋病发生阶段到龋病发展阶段的明显的口腔菌群变化,本研究基于随机森林算法构建了龋病风险评估的龋病菌群指标(MiC)。该指标在区分大鼠口腔菌群的龋病样本和健康样本时能达到99%的准确率,且在预测临床指标为健康的但未来会发生龋病的大鼠样本时,准确率达到77%。第四,本研究分析了在龋病发生发展过程中人和大鼠口腔菌群的异同。结果表明,尽管人和大鼠的口腔菌群在属水平上差别很大,且年龄或龋病(状态)驱使人和大鼠口腔菌群趋异进化,但是,在龋病发生发展过程中,人和大鼠在菌群的菌群结构变化上和在菌群中与龋病相关的代谢功能上高度一致。 因此,首先,本研究沿时间尺度监测了龋病发生发展过程,实现了菌群影响因素的精细控制,避免了除年龄、状态和宿主以外的其他因素的干扰,不仅验证了龋病预警模型,还为将来预警后的干预实验打下理论基础。其次,本研究提供了菌群预测疾病实验的动物模型数据分析的思路,即可以从菌群结构变化和菌群的疾病相关代谢功能两个角度来分析动物模型的菌群数据,为今后菌群实验动物模型的选择和实验设计打下了理论基础。最后,本研究发现随机森林算法在菌群预测疾病方法学方面具有巨大的潜力。
关键词生物信息学
摘要中文
其他摘要Caries is one of the most common infections in children and adult world-wide, however preventive intervention remains difficult. An accurate caries risk assessment method can identify patients at high caries risk for caries onset and thus help to deliver preventive therapies. Previous work in our research group showed that the spatial and temporal variation of oral microbiota can be employed for prediction of caries onset in children. However, the use of human cohorts have resulted in significant difficulties in mechanistic understanding of such predictive models, as in human cohorts it is difficult to precisely control the microenviroment and behavior of the individual subjects. The rodent model of dental caries, rats in particular, not only can simulate the onset and progression of caries in natural environments, but allows direct application and controls of the various etiological factors of caries, and thus greatly facilitate the longitudinal tracking of the microbiota dynamics during caries onset and progression. These advantages have made the rat model an excellent animal model for mechanistic study of the microbiota-based prediction of caries onset. However, previously there have been no reports that profile microbiome dynamics during caries development in rats. Here we simultaneously tracked the longitudinal development of microbiota of 57 three-week-old rats for 12 weeks, during which 27 stayed healthy and 30 transited from health into cariogenesis. The techniques were mainly 16S rRNA gene amplicon-based pyrosequencing technology coupled with varies multivariate statistical analyses. Firstly, we found that the factors of age and status exert the key impact on the overall composition of the rat oral microbiota, and difference in the taxa level used had a strong influence on the analysis of variation of oral microbiota. Secondly, a host-aging correlated microbiota development pattern apparent in healthy stage was retarded by caries onset. Moreover, oral microbiota during caries onset was significantly more correlated with changes in disease severity than that during caries progression. Thirdly, by distinguishing between aging- and disease-associated OTUs and exploiting the distinct microbiota dynamics between the onset and progression phases of caries, Microbial indicators of Caries (MiC) based on Random Forests algorithm was proposed, which diagnosed caries from healthy samples with 99% accuracy, and furthermore predicted future new caries-onsets for those samples presently clinically perceived as healthy with 77% accuracy. Finally, we analyzed the link and distinction in microbiota development underlying cariogenesis between rat and human, and found that the temporal variation of the structure and microbial metabolism of the rat oral microbiota is consistent with human oral microbiota during caries and health, and the predictive model for caries onset based on Random Forests algorithm is robust in both human and rat oral microbiota. Interestingly, bacterial composition of oral microbiota at the genus level was different between human and rat, and the divergent evolution of human oral microbiota and rat oral microbiota was driven by status (caries) or age. In summary, the findings in this M.S. thesis have several implications. Firstly, via the animal model of rat, this study further validates the notion that caries onset can be predicted via oral microbiota, and lays a theoretical foundation for future preventive intervention experiments based on such predictive model of diseases. Secondly, this study suggests that the microbiota data can be analyzed from microbiota structural changes and microbial metabolism, to analyze the experimental data from the microbiota of the animal models that are used to study how microbiota predicts disease. Finally, this study suggests that the Random Forests algorithm has huge potential for the analysis of the experimental data from the microbiota of the animal models and for the construction of disease predictive models.
作者部门单细胞中心
公开日期2017-01-30
学位类型硕士 ; 学位论文
语种中文
文献类型学位论文
条目标识符http://ir.qibebt.ac.cn/handle/337004/9981
专题单细胞中心组群
作者单位中国科学院大学
推荐引用方式
GB/T 7714
王险. 大鼠模型中致龋过程口腔微生物组的计算分析[D]. 北京. 中国科学院大学,2016.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
大鼠模型中致龋过程口腔微生物组的计算分析(3429KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王险]的文章
百度学术
百度学术中相似的文章
[王险]的文章
必应学术
必应学术中相似的文章
[王险]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。