Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries | |
Zhang, Kejun1; Han, Pengxian1; Gu, Lin2; Zhang, Lixue1; Liu, Zhihong1; Kong, Qingshan1; Zhang, Chuanjian1; Dong, Shanmu1; Zhang, Zhongyi1; Yao, Jianhua1; Xu, Hongxia1; Cui, Guanglei1; Chen, Liquan1,2 | |
2012-02-01 | |
发表期刊 | ACS APPLIED MATERIALS & INTERFACES |
卷号 | 4期号:2页码:658-664 |
摘要 | Nitrogen-doped MnO/graphene nanosheets (N-MnO/GNS) hybrid material was synthesized by a simple hydrothermal method followed by ammonia annealing. The samples were systematically investigated by X-ray diffraction analysis, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy. N-doped MnO (N-MnO) nanoparticles were homogenously anchored on the thin layers of N-doped GNS (N-GNS) to form an efficient electronic/ionic mixed conducting network. This nanostructured hybrid exhibited a reversible electrochemical lithium storage capacity as high as 772 mAh g−1 at 100 mA g−1 after 90 cycles, and an excellent rate capability of 202 mA h g−1 at a high current density of 5 A g−1. It is expected that N-MnO/GNS hybrid could be a promising candidate material as a high capacity anode for lithium ion batteries. ; Nitrogen-doped MnO/graphene nanosheets (N-MnO/GNS) hybrid material was synthesized by a simple. hydrothermal method followed by ammonia annealing. The samples were systematically investigated by X-ray diffraction analysis, Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy. N-doped MnO (N-MnO) nanoparticles were homogenously anchored on the thin layers of N-doped GNS (N-GNS) to form an efficient electronic/ionic mixed conducting network. This nanostructured hybrid exhibited a reversible electrochemical lithium storage capacity as high as 772 mAh g(-1) at 100 mA g(-1) after 90 cycles, and an excellent rate capability of 202 mA h g(-1) at a high current density of 5 A g(-1). It is expected that N-MnO/GNS hybrid could be a promising candidate material as a high capacity. anode for lithium ion batteries. |
文章类型 | Article |
关键词 | Nitrogen-doped Mno Nitrogen-doped Graphene Nanosheets Surface Defects Anode Material Lithium Ion Batteries |
学科领域 | 仿生能源系统 |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1021/am201173z |
关键词[WOS] | ANODE MATERIAL ; OXIDE NANOPARTICLES ; VANADIUM NITRIDE ; GRAPHENE ; STORAGE ; CARBON ; LI ; ELECTRODES ; CAPACITY ; FABRICATION |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Science & Technology - Other Topics ; Materials Science |
WOS类目 | Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:000300644500024 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qibebt.ac.cn/handle/337004/993 |
专题 | 仿生与固态能源系统研究组 |
作者单位 | 1.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China 2.Chinese Acad Sci, Inst Phys, Beijing 100080, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Kejun,Han, Pengxian,Gu, Lin,et al. Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries[J]. ACS APPLIED MATERIALS & INTERFACES,2012,4(2):658-664. |
APA | Zhang, Kejun.,Han, Pengxian.,Gu, Lin.,Zhang, Lixue.,Liu, Zhihong.,...&Chen, Liquan.(2012).Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries.ACS APPLIED MATERIALS & INTERFACES,4(2),658-664. |
MLA | Zhang, Kejun,et al."Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries".ACS APPLIED MATERIALS & INTERFACES 4.2(2012):658-664. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Synthesis of Nitroge(2653KB) | 开放获取 | CC BY-NC-SA | 浏览 下载 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论