QIBEBT-IR  > 先进有机功能材料研究组
共轭聚合物前线轨道能级调控与光伏性能研究
王久兴
导师阳仁强
2016-05
学位授予单位中国科学院大学
学位授予地点北京
学位专业化学工程
关键词共轭聚合物 聚合物太阳能电池 前线轨道能级
摘要延伸聚合物π共轭体系和在聚合物结构中引入氟是两种改善聚合物光伏性能的方法。目前广泛使用噻吩延伸共轭体系,这种方法通常会抬高聚合物的最高占有轨道(HOMO)能级,不利于形成大的开路电压。在聚合物结构中引入氟可以降低聚合物的HOMO能级,但很多情况下聚合物的HOMO能级比最低空轨道(LUMO)能级降得更多,导致聚合物的带隙变大,不利于吸收更多的光子。本论文围绕着调控聚合物的前线轨道(HOMO和LUMO)能级开展了一系列工作,主要研究内容包括两个方面:一、研究既能延伸聚合物共轭体系又能降低聚合物HOMO能级的方法;二、设计既具有低的HOMO能级,又具有小的光学带隙的含氟聚合物。这两个方面的研究内容具体如下: 1. 我们用苯环延伸烷噻吩基苯并二噻吩聚合物的共轭体系。与噻吩相比,苯环是缺电子的。并上苯环后聚合物的HOMO和LUMO能级分别从-5.36 eV和-3.60 eV降低到-5.47 eV和-3.73 eV,光学带隙从1.76 eV降低到1.74 eV,吸收边红移至713 nm。除此之外,聚合物分子间的相互作用力大大加强,热稳定性也有所提高。并上苯环后聚合物的光伏性能有明显提高,器件的短路电流密度从9.83 mA/cm2提高到12.93 mA/cm2,能量转换效率从5.35%提高到7.30%。 2. 我们用苯环延伸烷氧苯基苯并二噻吩聚合物的共轭体系。并上苯环后,聚合物的HOMO和LUMO能级得到显著降低,分别从-5.23 eV和-3.51 eV降低到-5.49 eV和-3.78 eV,而聚合物的光学带隙基本维持不变,为1.71 eV。并上苯环后聚合物的光伏性能有小幅提高,器件的开路电压从0.83 V提高到0.84 V,短路电流密度从11.33 mA/cm2提高到12.29 mA/cm2,能量转换效率从6.23%提高到6.57%。 3. 我们把两个噻吩并在苯并噻二唑(BT)上设计了一个新的稠环结构单元——二噻吩并苯并噻二唑(fDTBT)。我们将具有曲折结构的fDTBT 和含有长“撑开”侧链的引达省并二噻吩(IDT)组合在一起构建了聚合物PIDT-fDTBT。PIDT-fDTBT是研究曲折度对聚合物光伏性能影响的理想模型。与基于BT的聚合物相比,PIDT-fDTBT的HOMO能级下降了0.08 eV,LUMO能级上升了0.2 eV,光学带隙增大到2.03 eV。PIDT-fDTBT光伏器件的开路电压得到明显改善,达到了0.90 V,但由于带隙太宽,短路电流密度减小,导致能量转换效率降低。 4. 我们将fDTBT中BT单元上的硫换成氧,合成了一个具有较强吸电子能力的曲折结构受体二噻吩并苯并噁二唑(fDTBO)。我们将fDTBO分别与烷氧基苯并二噻吩和烷噻吩基苯并二噻吩单体共聚合成了聚合物PBDTO-fDTBO与PBDTT-fDTBO。这两个聚合物的光学带隙分别是2.00 eV和1.95 eV。PBDTO-fDTBO与PBDTT-fDTBO均展现了非常深的HOMO能级,分别达到了-5.58 eV和-5.60 eV。因此,基于这两个聚合物的光伏器件的开路电压都很大,均超过了1 V。 5. 我们首次将氟引入吡啶并噻二唑(PT)聚合物结构中。含氟的PT聚合物(PDTPT-2TF)的HOMO和LUMO能级分别为-5.34 eV和-3.89 eV,与不含氟的PT聚合物(PDTPT-2T)相比,分别降低了0.11 eV和0.15 eV。PDTPT-2TF光学带隙为1.45 eV,降低了0.04 eV。X射线衍射分析表明氟使聚合物固态结构更规整。引入氟之后聚合物的光伏性能得到大幅改善。PDTPT-2T器件的能量转换效率最大值仅为2.65%,其中开路电压为0.73 V,短路电流密度为5.34 mA/cm2,填充因子为67.91%。PDTPT-2TF器件的能量转换效率最大值为8.01%,相应的开路电压为0.74 V,短路电流密度为15.52 mA/cm2,填充因子为69.73%。8.01%的能量转换效率是基于PT的聚合物太阳能电池的最高能量转换效率,而且这个能量转换效率是在没有使用添加剂以及退火等后处理的条件下实现的。 本论文的研究成果表明:一、用苯环延伸聚合物的共轭体系和增大聚合物主链的曲折度是两种既能延伸聚合物共轭体系又能降低聚合物HOMO能级的有效方法;二、在DTPT-2T聚合物中引入氟既可以降低聚合物的HOMO能级又可以减小聚合物的光学带隙。本论文对于完善有机电子学理论有着重要意义。
其他摘要Extending π-conjugation system and incorporating fluorine substituent into polymer chains are two effective methods to improve their photovoltaic properties. Currently thiophene is widely used to extend the π-conjugation system of conjugated polymers. But this method usually results in a higher highest occupied molecular orbital (HOMO) energy level, which is unfavorable to realizing a high open-circuit voltage (Voc) in photovoltaic devices. Incorporating fluorine substituent into polymer chains could down-shift their HOMO levels, but in many cases their optical bandgaps are increased due to the less down-shifts of the lowest unoccupied molecular orbital (LUMO) levels. Large bandgaps are unfavorable for polymers to harvest more light. This dissertation focuses on tuning the frontier molecular orbitals (HOMO and LUMO) of photovoltaic polymers: (i) To explore the method to simultaneously extend the π-conjugation system and down-shift the HOMO level of a polymer; (ii) To design a fluorinated polymer simultaneously owning a down-shifted HOMO and reduced optical bandgap (Egopt). The main contents are as follows. 1. Benzene was used to extend the π-conjugation system of the polymer based on alkylthienyl-substituted benzodithiophene. Compared with thiophene, benzene is π-deficient. Fusing benzene on the polymer down-shifted HOMO and LUMO levels from -5.36 and -3.60 eV to -5.47 and -3.73 eV, respectively. The Egopt of the polymer was reduced from 1.76 to 1.74 eV, leading to a red-shifted absorption edge of 713 nm. Additionally, the polymer with extended π-conjugation system showed noticeably enhanced intermolecular interactions and a slightly improved thermal decomposition temperature. Fusing benzene on the polymer significantly improved its photovoltaic properties. The short-circuit current density (Jsc) of the best-performing photovoltaic devides was increased from 9.83 to 12.93 mA/cm2, and the optimum power conversion efficiency (PCE) was increased from 5.35% to 7.30%. 2. Benzene was used to extend the π-conjugation system of the polymer based on alkoxyphenyl-substituted benzodithiophene. Fusing benzene on the polymer down-shifted HOMO and LUMO levels from -5.23 and -3.51 eV to -5.49 and -3.78 eV, respectively. The Egopt (1.71 eV) of the polymer was nearly unchanged. The photovoltaic properties of the polymer were slightly improved by fusing benzene. The Voc of the best-performing photovoltaic devides was increased from 0.83 to 0.84 V, and the Jsc was increased from 11.33 to 12.29 mA/cm2. Consequently, the optimum PCE was increased from 6.23% to 6.57%. 3. A novel polycyclic aromatic unit dithienobenzothiadiazole (fDTBT) was designed by fusing two thiophene rings onto benzothiadiazole (BT). fDTBT has a curved configuration and indacenodithiophene (IDT) has side chains stretched out of the backbone plane. A new polymer PIDT-fDTBT comprising alternating fDTBT and IDT was designed and it was an ideal polymer to study the effects of curvature on photovoltaic properties. The HOMO level of PIDT-fDTBT was down-shifted by 0.08 eV while the LUMO was up-shifted by 0.2 eV in comparison with those of the BT-containing polymer. As a result, PIDT-fDTBT exhibited an increased Egopt of 2.03 eV. The Voc of PIDT-fDTBT-based photovoltaic devices was pronouncedly enhanced, reaching 0.90 V. However, the Jsc and PCE were decreased due to the increased bandgap. 4. We replaced the sulphur atom in fDTBT with oxygen atom and synthesized another polycyclic aromatic compound dithienobenzooxadiazole (fDTBO). Compared with fDTBT, fDTBO also has a curved configuration but with stronger electron-withdrawing ability. Two polymers utilizing fDTBO as electron-deficient unit and alkoxy-substituted benzodithiophene (BDTO) and alkylthienyl-substituted benzodithiophene (BDTT) as electron-rich units were synthesized, respectively. The Egopt were 2.00 and 1.95 eV for PBDTO-fDTBO and PBDTT-fDTBO, respectively. PBDTO-fDTBO and PBDTT-fDTBO exhibited very deep HOMO energy levels of -5.58 and -5.60 eV, respectively. As a result, both of the photovoltaic devices based on PBDTO-fDTBO and PBDTT-fDTBO realized very high Voc values of over 1 V. 5. Fluorine was firstly applied in thiadiazolo[3,4-c]pyridine (PT)-containing polymer. The HOMO and LUMO levels of the fluorinated polymer PDTPT-2TF were -5.34 and -3.89 eV, down-shifted by 0.11 and 0.15 eV , respectively, in comparison with the none-fluorinated polymer PDTPT-2T. PDTPT-2TF exhibited a narrow Egopt of 1.45 eV, 0.04 eV smaller than that of PDTPT-2T. X-ray diffraction indicated that more ordered structure was formed in the solid film of PDTPT-2TF. Incorporation of fluorine into PT-containing polymer significantly improved the photovoltaic properties. The best-performing photovoltaic devices based on PDTPT-2T only gave a maximum PCE of 2.65%, with a Voc of 0.73 V, a Jsc of 5.34 mA/cm2, and a fill factor (FF) of 67.91%. In striking contrast, the maximum PCE of the devices based on PDTPT-2TF reached 8.01%, along with a slight higher Voc of 0.74 V, a significantly enhanced Jsc of 15.52 mA/cm2, and a slight higher FF of 69.73%. This efficiency is the highest one for PT-containing polymers and it was achieved without any processing additives or post-treatments. The findings of this dissertation indicate that: (i) Extending π-conjugation system and increasing backone curvature of polymers are two effective strategies to simultaneously extend the π-conjugation system and down-shift the HOMO energy level of the polymer; (ii) Incorporating fluorine into DTPT-2T polymer can simultaneously down-shift the HOMO energy level and reduce the Egopt. This dissertation is of great significance in perfecting the theory of organic electronics.
作者部门先进有机功能材料团队
学科领域工学
公开日期2017-07-01
学位类型博士 ; 学位论文
语种中文
文献类型学位论文
条目标识符http://ir.qibebt.ac.cn/handle/337004/9761
专题先进有机功能材料研究组
作者单位中国科学院青岛生物能源与过程研究所
推荐引用方式
GB/T 7714
王久兴. 共轭聚合物前线轨道能级调控与光伏性能研究[D]. 北京. 中国科学院大学,2016.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
共轭聚合物前线轨道能级调控与光伏性能研究(9672KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[王久兴]的文章
百度学术
百度学术中相似的文章
[王久兴]的文章
必应学术
必应学术中相似的文章
[王久兴]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。