QIBEBT-IR  > 生物传感技术团队(过去)
生物模板法可控合成过渡金属氧化物纳米结构及其电化学葡萄糖传感应用
韩磊
导师刘爱骅
2016-05
学位授予单位中国科学院研究生院
学位授予地点北京
学位专业化学工程
关键词生物模板 生物矿化 纳米结构 过渡金属氧化物 电化学葡萄糖传感器
摘要电化学葡萄糖传感器在血糖监测和工业生物过程监控中发挥着重要作用。电极材料及识别元件是电化学传感的基础,为了提高它们的性能,人们引入了纳米材料。其中,过渡金属氧化物由于其特殊的理化性能而被广泛应用于电化学葡萄糖传感。然而,传统的纳米材料合成方法通常存在着一些问题:产品结构简单、形貌单一;合成过程复杂、对操作人员要求高、耗能高、设备造价高、安全性差、原料成本高;所需的合成试剂或条件对环境或人体有害;电化学传感性能不理想。为克服这些挑战,本课题定位于利用绿色、简单、灵活、价廉的生物模板法合成具有高电化学传感性能的纳米材料以用于葡萄糖检测。 二氧化锰(MnO2)作为重要的过渡金属氧化物,具有独特的电催化及化学催化活性、绿色环保和无毒特性,已被广泛应用于电化学和分析化学领域。在MnO2的各种形貌中,一维的纳米形貌因其电子传递的限制结构、量子尺寸效应和表面效应,具有优秀的电化学应用潜力(比如超级电容器、离子电池和电化学传感器)。然而,它们的合成方法通常需要复杂的仪器设备、加热过程、有害的有机试剂和强氧化剂,从而限制了它们的应用。为了便捷地合成出形貌可控的一维MnO2纳米线,本课题以基因改造的丝状噬菌体M13作生物模板,通过Mn2+在碱性条件下的自发氧化,实现了MnO2晶体在噬菌体框架上的成核与生长。通过改变M13的表面电荷及浓度,可实现对纳米线形貌的控制,MnO2晶体能够均匀地分布在带负电荷的四聚谷氨酸融合噬菌体(M13-E4)上,而在野生型噬菌体和带正电荷的四聚精氨酸融合噬菌体上出现不规则团聚。所合成的M13-E4@MnO2纳米线在高盐中性溶液中展现了对H2O2的电催化氧化活性。为了进一步阐明此活性的优势,利用其和葡萄糖氧化酶构建了葡萄糖生物传感器。该传感器具有宽的线性范围(0.005~2 mM葡萄糖)、快速的响应(5 s之内)、可接受的检测限(1.8 μM,S/N = 3)、良好的批内批间再现性、满意的储存稳定性以及对实际样品检测的可靠性。由于其在合成及性能上的优越性,该MnO2纳米线有望应用于电催化剂、电化学传感、超级电容器等领域。 虽然上述生物传感器改善了常规酶传感器的一些性能,但它也存在一些缺点,如稳定性较差(主要归因于酶的使用)、灵敏度低等。因此,为了解决这些问题,我们选用了可作为葡萄糖电催化氧化剂的Co3O4来构建直接电化学无酶传感器。为了便捷地得到表面积大的直接电化学传感界面,本课题以银杏树叶为生物模板,开发了一种简单、价廉、环保的方法,从而合成了Co3O4三维多孔材料。该材料由相互交联的Co3O4颗粒(粒径30~100 nm)组成,从而产生了不规则的多孔结构,从而提供了更大的比表面积和电催化活性位点。随后,Co3O4三维多孔材料被成功地用作直接电化学传感界面以实现了对葡萄糖的无酶检测。所制备的传感器具有简单的制备步骤、快速的响应、较高的灵敏度(439.39 μA mM-1 cm-2)、较低的检测限(0.1 μM,S/N = 3)。另外,它也显示了优秀的稳定性、对血糖检测常见干扰物质(抗坏血酸、尿酸、多巴胺、对乙酰氨基酚)及氯离子的抗干扰性能、对血糖检测的可靠性。总之,由于其在合成及性能上的优越性,Co3O4三维多孔材料有望应用于电催化剂、电化学传感、超级电容器等领域。另外,所提出的材料合成方法具有普适性,鉴于不同的合成条件及不同的金属氧化物种类可能产生不同的纳米结构和特性,所开发的材料合成方法可以延伸出各种各样的金属或金属氧化物纳米材料并具有广阔的应用方向。
其他摘要Electrochemical glucose biosensor plays important roles in both diabete diagnostics and industrial bioprocess monitoring. As the foundation of the electrochemical sensor, the electrode materials or the recognition elements are improved by intruducing a variety of nanomaterials. Among the various nanomaterials, transition metal oxides have been widely applied on the electrochemical glucose sensor, due to their unique physicochemical properties. However, the conventional synthesis methods generally require complex process, expensive equipments and precursors, skilled workers, high consumption of energy, unsafe condition or harmful reagents. In addition, the nanomaterials from these methods lack complicated structure and morphology, and their electrochemical performances still need to be improved. To overcome these challenges, our aim is to prepare the novel nanomaterials with high electrochemical sensing performance by the green, simple, facile and cost-effective bio-templated strategy. As a kind of attractive transition metal oxide, manganese dioxide (MnO2) with different morphologies, has been widely studied on the field of electrochemistry and analytical chemistry, due to its electrocatalytic activity, chemical catalysis, environmental friendliness and nontoxicity. Among the different morphologies of MnO2, one-dimensional (1D) nano-structured morphologies have attracted more and more interests for electrochemical applications (such as supercapacitor, ion battery and electrochemical sensor), due to the controlled structure for electron transfer, quantum size effect and surface effect. To conveniently obtain 1D MnO2 nanowires (NWs) with controlled structure and unique properties under mild conditions, the genetically engineered M13 phages were useed as templates for precise nucleation and growth of MnO2 crystals on filamentous phage scaffolds, via the spontaneous oxidation of Mn2+ in alkaline solution. It was found that the morphology of NWs could be tailored by the surface charge of M13 mutants. MnO2 crystals were uniformly distributed on the surface of negatively-charged tetraglutamate-fused phage (M13-E4), significantly different from irregular MnO2 agglomeration on the weakly negatively-charged wild-type phage and positively-charged tetraarginine-fused phage. The as-synthesized M13-E4@MnO2 NWs could catalyze the electro-oxidation of H2O2 at neutral pH. To demonstrate the superiority of the electrocatalytic activity in the solution containing plenty of chloride ions at neutral pH, both glucose oxidase and as-prepared MnO2 NWs were used for fabricating the glucose biosensor. The proposed biosensor showed a wide linear range (0.005~2 mM glucose), rapid response (within 5 s), an acceptable limit of detection (1.8 μM glucose, S/N = 3), good inter-and intra-assay reproducibility, satisfactory storage stability and reliability of real sample detection. Due to the superiorities on synthesis and electrochemical performance, the MnO2 NWs are promising to be applied on electrocatalysis, electrochemical sensor, and supercapacitor. Although the above biosensor exhibits improved performance, there were still some disadvantages: low stability (mainly ascribed to enzymes) and low sensitivity. Therefore, we chose cobalt oxide (Co3O4), a kind of electrocatalyst of glucose oxidation, to fabricate the electrochemical non-enzymatic sensor. To obtain the direct electrochemical sensing interface with large surface area, a novel three-dimensional (3D) porous Co3O4 architecture was first synthesized through a simple, cost-effective and environmentally friendly leaf-templated strategy. The Co3O4 nanoparticles (30~100 nm) were interconnected with each other to form a 3D porous structure, which provided high specific surface area and numerous electrocatalytic active sites. Subsequently, Co3O4 was successfully utilized as direct electrochemical sensing interface for non-enzymatic detection of H2O2 and glucose. The fabricated Nafion/Co3O4/GCE glucose sensor showed not only the rapid response, high sensitivity (439.39 μA mM-1 cm-2) and low detection limit (0.1 μM glucose, S/N = 3), but also excellent stability, anti-interference performance for possible interferents (such as ascorbic acid, uric acid, dopamine, acetaminophen and especially 0.15 M chloride ions) and reliability for blood glucose detection. In conclusion, due to the superiorities on synthesis and performance, 3D porous Co3O4 is promising for possible applications in electrocatalysis, electrochemical sensor and supercapacitor. In addition, the proposed synthesis strategy may be applicable to prepare a wide range of metal or metal oxide nanostructures. Considering the different nanostructures and properties from different synthesis condition and metal oxides, various potential applications are envisioned.
作者部门生物传感技术团队
学科领域化学工程
公开日期2016-09-01
学位类型博士 ; 学位论文
语种中文
文献类型学位论文
条目标识符http://ir.qibebt.ac.cn/handle/337004/9755
专题生物传感技术团队(过去)
作者单位1.中国科学院青岛生物能源与过程研究所
2.中科院大学
推荐引用方式
GB/T 7714
韩磊. 生物模板法可控合成过渡金属氧化物纳米结构及其电化学葡萄糖传感应用[D]. 北京. 中国科学院研究生院,2016.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
生物模板法可控合成过渡金属氧化物纳米结构(6094KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[韩磊]的文章
百度学术
百度学术中相似的文章
[韩磊]的文章
必应学术
必应学术中相似的文章
[韩磊]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。