中国科学院青岛生物能源与过程研究所机构知识库
Advanced  
QIBEBT-IR  > 膜分离与催化团队  > 期刊论文
Title:
Oxygen Transport Membrane for Thermochemical Conversion of Water and Carbon Dioxide into Synthesis Gas
Author: Liang, Wenyuan1,3; Cao, Zhengwen2,4; He, Guanghu1; Caro, Juergen2; Jiang, Heqing1
Source: ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Issued Date: 2017-10-01
Volume: 5, Issue:10, Pages:8657-8662
Keyword: Oxygen transport membrane ; Synthesis gas ; H2O splitting ; CO2 decomposition
DOI: 10.1021/acssuschemeng.7b01305
DOC Type: Article
English Abstract: Conversion of CO, and H2O into synthesis gas via the solar thermochemical process is usually carried out at a high temperature of above 1500 degrees C and requires long-term durability of metal oxide catalysts during frequent heating cooling cycles. Herein, a dual-phase Ce0.9Pr0.1O2-delta-Pr0.6Sr0.4FeO3-delta oxygen transport membrane made of mixed metal oxides was employed for the one-step thermochemical conversion of CO, and H2O to synthesis gas with a F12/ CO ratio of 2:1. Benefitting from the in situ removal of the generated oxygen through the highly oxygen-ion permeable membrane, the effective splitting of CO2 and H2O was achieved at the relatively low temperature of <1000 degrees C. A synthesis gas production rate of 1.3 mL min-lcm-2 was obtained at 930 C for a H2O/CO2 feed ratio of 5:1 with a H2O conversion of above 1.7% and a CO2 conversion of above 4.2%. Compared with the discontinuous two-step thermochemical decomposition, the combination of solar energy, catalytic thermolysis, and oxygen transport membrane reactor as proposed in this work offers a new perspective and an alternative route to convert H2O and CO, into synthesis gas.
WOS Headings: Science & Technology ; Physical Sciences ; Technology
WOS Subject: Chemistry, Multidisciplinary ; Engineering, Chemical
WOS Subject Extended: Chemistry ; Engineering
WOS Keyword Plus: VISIBLE-LIGHT IRRADIATION ; HYDROGEN-PRODUCTION ; THERMAL-DECOMPOSITION ; CERAMIC MEMBRANES ; PRODUCE HYDROGEN ; CO2 ; REACTOR ; DISSOCIATION ; H2O ; METHANE
Indexed Type: SCI
Funder: National Natural Science Foundation of China(21501186 ; project of Science and Technology Development Program in Shandong Province(2014GSF117031) ; Strategic Priority Research Program of the Chinese Academy of Sciences(XDB17020100) ; Recruitment Program of Global Youth Experts of China ; 21471156)
Language: 英语
WOS ID: WOS:000412382700021
Citation statistics:
Content Type: 期刊论文
URI: http://ir.qibebt.ac.cn/handle/337004/9728
Appears in Collections:膜分离与催化团队_期刊论文

Files in This Item:

There are no files associated with this item.


description.institution: 1.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao Key Lab Funct Membrane Mat & Membrane Tec, Songling Rd 189, Qingdao 266101, Peoples R China
2.Leibniz Univ Hannover, Inst Phys Chem & Electrochem, Callinstr 3A, D-30167 Hannover, Germany
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470 Mulheim, Germany

Recommended Citation:
Liang, Wenyuan,Cao, Zhengwen,He, Guanghu,et al. Oxygen Transport Membrane for Thermochemical Conversion of Water and Carbon Dioxide into Synthesis Gas[J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING,2017,5(10):8657-8662.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Liang, Wenyuan]'s Articles
[Cao, Zhengwen]'s Articles
[He, Guanghu]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Liang, Wenyuan]‘s Articles
[Cao, Zhengwen]‘s Articles
[He, Guanghu]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Powered by CSpace