QIBEBT-IR  > 膜分离与催化研究组
Artificial neural network model for turbulence promoter-assisted crossflow microfiltration of particulate suspensions
Liu, Yuanfa1,2; He, Gaohong1; Tan, Ming1,3; Nie, Fei1; Li, Baojun1
2014-04-01
发表期刊DESALINATION
卷号338期号:1页码:57-64
摘要In this study, an artificial neural network (ANN) model for the turbulence promoter-assisted crossflow microfiltration (CFMF) process was successfully established, in which the inlet velocity, transmembrane pressure (TMP) and feed concentration were taken as inputs, and the flux improvement efficiency (FIE) by turbulence promoter was taken as output. Using the trained ANN model, the FIE can be predicted under CFMF operation conditions that are not included in the training database. It reveals that the FIE first increases and then decreases with increasing either TMP or inlet velocity, and increases with increasing feed concentration. Among three input variables, TMP has the most important effect on the FIE. The optimization of MP operation conditions was largely dependent on the feed concentration. The high FIE can be obtained by exerting both high inlet velocity (>0.7 m/s) and low TMP ( <30 kPa) at a relatively low feed concentration ( <1 g/L), and both high inlet velocity (>0.7 m/s) and high IMP (>70 kPa) at a relatively high feed concentration (>8 g/L). This study provides a useful guide for the applications of turbulence promoter in CFMF processes. (C) 2014 Elsevier B.V. All rights reserved.
文章类型Article
关键词Artificial Neural Network Genetic Algorithm Turbulence Promoter Fouling Flux Improvement Efficiency
WOS标题词Science & Technology ; Technology ; Physical Sciences
DOI10.1016/j.desal.2014.01.015
关键词[WOS]GENETIC ALGORITHM ; CERAMIC MEMBRANES ; PERMEATE FLUX ; OPTIMIZATION ; PERFORMANCE ; PREDICTION ; ULTRAFILTRATION ; INSERTS ; DECLINE ; BAFFLE
收录类别SCI
语种英语
WOS研究方向Engineering ; Water Resources
WOS类目Engineering, Chemical ; Water Resources
WOS记录号WOS:000335544600008
引用统计
文献类型期刊论文
条目标识符http://ir.qibebt.ac.cn/handle/337004/1546
专题膜分离与催化研究组
作者单位1.Dalian Univ Technol, Sch Chem Engn, R&D Ctr Membrane Sci & Technol, State Key Lab Fine Chem, Dalian 116012, Peoples R China
2.Dalian Polytech Univ, Sch Text & Mat Engn, Dalian, Peoples R China
3.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Key Lab Biobased Mat, Qingdao 266101, Peoples R China
推荐引用方式
GB/T 7714
Liu, Yuanfa,He, Gaohong,Tan, Ming,et al. Artificial neural network model for turbulence promoter-assisted crossflow microfiltration of particulate suspensions[J]. DESALINATION,2014,338(1):57-64.
APA Liu, Yuanfa,He, Gaohong,Tan, Ming,Nie, Fei,&Li, Baojun.(2014).Artificial neural network model for turbulence promoter-assisted crossflow microfiltration of particulate suspensions.DESALINATION,338(1),57-64.
MLA Liu, Yuanfa,et al."Artificial neural network model for turbulence promoter-assisted crossflow microfiltration of particulate suspensions".DESALINATION 338.1(2014):57-64.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Artficial neural net(1346KB) 开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Yuanfa]的文章
[He, Gaohong]的文章
[Tan, Ming]的文章
百度学术
百度学术中相似的文章
[Liu, Yuanfa]的文章
[He, Gaohong]的文章
[Tan, Ming]的文章
必应学术
必应学术中相似的文章
[Liu, Yuanfa]的文章
[He, Gaohong]的文章
[Tan, Ming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Artficial neural network model for turbulence promoter-assisted.pdf
格式: Adobe PDF
所有评论 (1)
谭明
2014-03-01 09:56
http://www.sciencedirect.com/science/article/pii/S0011916414000319
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。