QIBEBT-IR  > 先进有机功能材料研究组
Fusing Benzo[c][1,2,5]oxadiazole Unit with Thiophene for Constructing Wide-bandgap High-performance IDT-based Polymer Solar Cell Donor Material
Song, Xin1; Fan, Meijie1; Zhang, Kaili1; Ding, Dakang1; Chen, Weiye1; Li, Yonghai2; Yu, Liangmin3; Sun, Mingliang1; Yang, Renqiang2
2018-04-01
Source PublicationMACROMOLECULAR RAPID COMMUNICATIONS
ISSN1022-1336
Volume39Issue:8
AbstractBenzo[c][1,2,5]oxadiazole (BO) moiety is a strong electron-withdrawing unit compared to benzo[c][1,2,5]thiadiazole (BT). It is usually introduced as an acceptor to construct narrow band-gap donor-acceptor (D-A) materials. Herein, the -extended conjugated moiety dithieno[3',2':3,4 '';2,3 '':5,6]-benzo[1,2-c][1,2,5]oxadiazole (BOT) was adopted as the acceptor moiety to design D-A polymers. Considering the more extended pi-conjugated molecular system of BOT compared to the BO unit, a narrower optical band-gap is expected for BOT-based IDT polymer (PIDT-BOT). Unexpectedly, the UV-vis absorption spectra of PIDT-BOT films display a great hypochromatic shift of about 60 nm compared to a BO-based analog (PIDT-BO). The optical band-gaps of the materials are broadened from 1.63 eV (PIDT-BO) to 2.00 eV (PIDT-BOT) accordingly. Although the range of external quantum efficiency (EQE) of PIDT-BOT-based polymer solar cell (PSC) devices is not as wide as for PIDT-BO-based devices, the EQE response intensities of the PIDT-BOT based device are evidently high. As a result, PSC devices based on PIDT-BOT reveal the best power conversion efficiency at 6.08%.
SubtypeArticle
KeywordDonor Material Polymer Solar Cells Power Conversion Efficiency Wide Band-gap Benzo[c][1 2 5]Oxadiazole
WOS HeadingsScience & Technology ; Physical Sciences
DOI10.1002/marc.201700782
WOS KeywordPOWER CONVERSION EFFICIENCY ; ENERGY-LEVEL ; INDACENODITHIOPHENE ; BENZODITHIOPHENE ; BENZOTHIADIAZOLE ; COPOLYMERS ; ACCEPTOR
Indexed BySCI
Language英语
WOS Research AreaPolymer Science
Funding OrganizationMinistry of Science and Technology of China(2014CB643501) ; National Natural Science Foundation of China(51773220 ; 21502205 ; 51573205)
WOS SubjectPolymer Science
WOS IDWOS:000430396900004
PublisherWILEY-V C H VERLAG GMBH
Citation statistics
Document Type期刊论文
Identifierhttp://ir.qibebt.ac.cn/handle/337004/10810
Collection先进有机功能材料研究组
Corresponding AuthorSun, Mingliang; Yang, Renqiang
Affiliation1.Ocean Univ China, Sch Mat Sci & Engn, Qingdao 266100, Peoples R China
2.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, CAS Key Lab Biobased Mat, Qingdao 266101, Peoples R China
3.Ocean Univ China, Minist Educ, Key Lab Marine Chem Theory & Technol, Qingdao 266100, Peoples R China
Recommended Citation
GB/T 7714
Song, Xin,Fan, Meijie,Zhang, Kaili,et al. Fusing Benzo[c][1,2,5]oxadiazole Unit with Thiophene for Constructing Wide-bandgap High-performance IDT-based Polymer Solar Cell Donor Material[J]. MACROMOLECULAR RAPID COMMUNICATIONS,2018,39(8).
APA Song, Xin.,Fan, Meijie.,Zhang, Kaili.,Ding, Dakang.,Chen, Weiye.,...&Yang, Renqiang.(2018).Fusing Benzo[c][1,2,5]oxadiazole Unit with Thiophene for Constructing Wide-bandgap High-performance IDT-based Polymer Solar Cell Donor Material.MACROMOLECULAR RAPID COMMUNICATIONS,39(8).
MLA Song, Xin,et al."Fusing Benzo[c][1,2,5]oxadiazole Unit with Thiophene for Constructing Wide-bandgap High-performance IDT-based Polymer Solar Cell Donor Material".MACROMOLECULAR RAPID COMMUNICATIONS 39.8(2018).
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Song, Xin]'s Articles
[Fan, Meijie]'s Articles
[Zhang, Kaili]'s Articles
Baidu academic
Similar articles in Baidu academic
[Song, Xin]'s Articles
[Fan, Meijie]'s Articles
[Zhang, Kaili]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Song, Xin]'s Articles
[Fan, Meijie]'s Articles
[Zhang, Kaili]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.