Chemical looping reforming of toluene as a biomass tar model compound over two types of oxygen carriers: 2CuO-2NiO/Al2O3 and CaFe2O4 | |
Wang, Zhiqi1; Zhu, Min1; He, Tao1; Zhang, Jinzhi1; Wu, Jingli1; Tian, Hanjing2; Wu, Jinhu1 | |
2018-06-15 | |
Source Publication | FUEL |
ISSN | 0016-2361 |
Volume | 222Pages:375-384 |
Abstract | Chemical looping reforming/gasification of toluene, the model compound representing biomass tar, was studied by using two oxygen carriers, 2CuO-2NiO/Al2O3 (molar ratio) and CaFe2O4. Their reaction performances were evaluated in a TG-FTIR and a laboratory-scale fixed bed reactor. The active lattice oxygen of the 2CuO-2NiO/Al2O3 oxygen carrier demonstrated excellent reactivity and completely oxidized toluene to CO2 at 600-700 degrees C, while the fixed bed reactor data indicated that 2CuO-2NiO/Al2O3 oxygen carrier could catalyze the cracking of toluene to produce H-2 after loss of lattice oxygen. The CaFe2O4 oxygen carrier exhibited a good performance of chemical looping partial oxidation of toluene to CO and H-2 with a fairly high reactivity. Over CaFe2O4 oxygen carrier, the CO and H-2 dominated reaction products in the temperature range of 800-900 degrees C except at the startup stage. Catalytic cracking of toluene by CaFe2O4 to produce H-2 was also observed after partial loss of lattice oxygen. Stable performance of CaFe2O4 with high reactivity to syngas (CO and H-2) was demonstrated during a 3cyle test in the fixed bed reactor. After reduction of action with toluene, scanning electron microscopy (SEM) and X-ray diffraction (XRD) indicated that 2CuO-2NiO/Al2O3 was reduced to metallic copper and nickel with the mixture of NiAl2O4, and CaFe2O4 was reduced to metallic iron and CaO. In summary, two oxygen carriers displayed high toluene conversion at the beginning stage and the conversion of toluene increased to about 100% in the subsequent stage. |
Subtype | Article |
Keyword | Biomass Gasification Tar Chemical Looping Reforming Toluene Oxygen Carriers |
WOS Headings | Science & Technology ; Technology |
DOI | 10.1016/j.fuel.2018.02.164 |
WOS Keyword | SYNTHESIS GAS GENERATION ; OF-THE-ART ; COAL-GASIFICATION ; PRODUCER GAS ; LIQUID FUELS ; OXIDES ; CATALYST ; HYDROGEN ; METHANE ; ELIMINATION |
Indexed By | SCI |
Language | 英语 |
WOS Research Area | Energy & Fuels ; Engineering |
Funding Organization | National Key R&D Program of China(2016YFE0108400) ; NSF-NSFC collaborative research(1511818) ; China Postdoctoral Science Foundation(2017M612368) |
WOS Subject | Energy & Fuels ; Engineering, Chemical |
WOS ID | WOS:000429422800038 |
Publisher | ELSEVIER SCI LTD |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.qibebt.ac.cn/handle/337004/10796 |
Collection | 热化学转化研究组 |
Corresponding Author | Wang, Zhiqi; Wu, Jinhu |
Affiliation | 1.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Key Lab Biofuels, Qingdao 266101, Peoples R China 2.West Virginia Univ, Dept Chem Engn, Morgantown, WV 26505 USA |
Recommended Citation GB/T 7714 | Wang, Zhiqi,Zhu, Min,He, Tao,et al. Chemical looping reforming of toluene as a biomass tar model compound over two types of oxygen carriers: 2CuO-2NiO/Al2O3 and CaFe2O4[J]. FUEL,2018,222:375-384. |
APA | Wang, Zhiqi.,Zhu, Min.,He, Tao.,Zhang, Jinzhi.,Wu, Jingli.,...&Wu, Jinhu.(2018).Chemical looping reforming of toluene as a biomass tar model compound over two types of oxygen carriers: 2CuO-2NiO/Al2O3 and CaFe2O4.FUEL,222,375-384. |
MLA | Wang, Zhiqi,et al."Chemical looping reforming of toluene as a biomass tar model compound over two types of oxygen carriers: 2CuO-2NiO/Al2O3 and CaFe2O4".FUEL 222(2018):375-384. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment