Rational design of asymmetric benzodithiophene based photovoltaic polymers for efficient solar cells | |
Zhu, Tingting1; Liu, Deyu2,3; Zhang, Kaili1; Li, Yonghai2; Liu, Zhe1; Gao, Xudong1; Bao, Xichang2![]() | |
2018-01-21 | |
Source Publication | JOURNAL OF MATERIALS CHEMISTRY A
![]() |
ISSN | 2050-7488 |
Volume | 6Issue:3Pages:948-956 |
Abstract | Extending pi-conjugation in the benzodithiophene (BDT) side chains has been proven useful to improve the efficiencies of the BDT-based polymer solar cells (PSCs). Herein, combined with a symmetry-breaking strategy of a BDT unit, we further designed a new asymmetric 1D-2D (one dimensional-two dimensional) monomer asy-BDTBP with an alkoxyl group as the 1D part and a p-extending alkoxybiphenyl as the 2D substituted group. Medium band-gap donor-acceptor (D-A) conjugated polymer P1 was synthesized with asy-BDTBP and 4,7-di(4-(2-ethylhexyl)-2-thienyl)-5,6-difluoro-2,1,3benzothiadiazole (DTffBT) as the donor and acceptor unit, respectively. Encouragingly, P1 blended with PC71BM exhibited an obviously enhanced power conversion efficiency (PCE) compared to the reported symmetric analogue PBDTBP-DTffBT (6.70%). The PCE increased to 8.45% with an open-circuit voltage (V-OC) of 0.838 V, a short-circuit current density (J(SC)) of 14.35 mA cm(-2) and a fill factor (FF) of 70.27%. However, P1 coupled with a classical non-fullerene acceptor ITIC revealed a relatively poor efficiency of 6.35% due to the bad complementarity of absorption spectra. To match the absorption of ITIC, a wide band-gap D-A polymer P2 was further designed with a weak electron-withdrawing group benzo[1,2c: 4,5-c'] dithiophene-4,8-dione (BDD) instead of DTffBT as the acceptor unit. As a result, P2 possessed a complementary absorption spectrum with ITIC, and the resulting devices presented an excellent photovoltaic performance. The optimal efficiency boosted to 10.04% with V-OC of 0.873 V, J(SC) of 17.60 mA cm(-2) and FF of 65.37%. This work demonstrates the great potential of asymmetric BDTs for high efficient PSCs and the importance of the rational design of polymers for different types of PSCs. |
Subtype | Article |
WOS Headings | Science & Technology ; Physical Sciences ; Technology |
DOI | 10.1039/c7ta09736k |
WOS Keyword | 13-PERCENT EFFICIENCY ; ELECTRON-ACCEPTOR ; MOLECULAR DESIGN ; BUILDING-BLOCKS ; BAND-GAP ; PERFORMANCE ; DONOR ; UNIT ; MORPHOLOGY ; 10-PERCENT |
Indexed By | SCI |
Language | 英语 |
WOS Research Area | Chemistry ; Energy & Fuels ; Materials Science |
Funding Organization | National Natural Science Foundation of China(21502205 ; 51573205 ; 51773220 ; 21274134) |
WOS Subject | Chemistry, Physical ; Energy & Fuels ; Materials Science, Multidisciplinary |
WOS ID | WOS:000422949700024 |
Publisher | ROYAL SOC CHEMISTRY |
Citation statistics | |
Document Type | 期刊论文 |
Identifier | http://ir.qibebt.ac.cn/handle/337004/10552 |
Collection | 先进有机功能材料研究组 |
Corresponding Author | Li, Yonghai; Sun, Mingliang; Yang, Renqiang |
Affiliation | 1.Ocean Univ China, Sch Mat Sci & Engn, Qingdao 266100, Peoples R China 2.Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, CAS Key Lab Biobased Mat, Qingdao 266101, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
Recommended Citation GB/T 7714 | Zhu, Tingting,Liu, Deyu,Zhang, Kaili,et al. Rational design of asymmetric benzodithiophene based photovoltaic polymers for efficient solar cells[J]. JOURNAL OF MATERIALS CHEMISTRY A,2018,6(3):948-956. |
APA | Zhu, Tingting.,Liu, Deyu.,Zhang, Kaili.,Li, Yonghai.,Liu, Zhe.,...&Yang, Renqiang.(2018).Rational design of asymmetric benzodithiophene based photovoltaic polymers for efficient solar cells.JOURNAL OF MATERIALS CHEMISTRY A,6(3),948-956. |
MLA | Zhu, Tingting,et al."Rational design of asymmetric benzodithiophene based photovoltaic polymers for efficient solar cells".JOURNAL OF MATERIALS CHEMISTRY A 6.3(2018):948-956. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment