QIBEBT-IR  > 仿生能源与储能系统团队
Self-Established Rapid Magnesiation/De-Magnesiation Pathways in Binary Selenium-Copper Mixtures with Significantly Enhanced Mg-Ion Storage Reversibility
Zhang, Zhonghua1,2; Chen, Bingbing1; Xu, Huimin3; Cui, Zili1; Dong, Shanmu1; Du, Aobing1,2; Ma, Jun1; Wang, Qingfu1; Zhou, Xinhong3; Cui, Guanglei1
2018-01-04
发表期刊ADVANCED FUNCTIONAL MATERIALS
卷号28期号:1
摘要Rechargeable magnesium/sulfur (Mg/S) and magnesium/selenium (Mg/Se) batteries are characterized by high energy density, inherent safety, and economical effectiveness, and therefore, are of great scientific and technological interest. However, elusive challenges, including the limited charge storage capacity, low Coulombic efficiency, and short cycle life, have been encountered due to the sluggish electrochemical kinetics and severe shuttles of ploysulfides (polyselenide). Taking selenium as model paradigm, a new and reliable Mg-Se chemistry is proposed through designing binary selenium-copper (Se-Cu) cathodes. An intriguing effect of Cu powders on the electrochemical reaction pathways of the active Se microparticles is revealed in a way of forming Cu3Se2 intermediates, which induces an unconventional yet reversible two-stage magnesiation mechanism: Mg-ions first insert into Cu3Se2 phases; in a second step Cu-ions in the Mg2xCu3Se2 lattice exchange with Mg-ions. As expected, binary Se-Cu electrodes show significantly improved reversibility and elongated cycle life. More bracingly, Se/C nanostructures fabricated by facile blade coating Se nanorodes onto copper foils exhibit high output power and capacity (696.0 mAh g(-1) at 67.9 mA g(-1)), which outperforms all previously reported Mg/Se batteries. This work envisions a facile and reliable strategy to achieve better reversibility and long-term durability of selenium (sulfur) electrodes.
文章类型Article
关键词Displacement Reactions High Reversibility Intercalation Reactions Magnesium Batteries Selenium Cathodes
WOS标题词Science & Technology ; Physical Sciences ; Technology
DOI10.1002/adfm.201701718
关键词[WOS]POSITIVE ELECTRODE ; CRYSTAL-STRUCTURE ; SULFUR CATHODE ; BATTERIES ; LITHIUM ; ENERGY ; CAPACITY ; XPS
收录类别SCI
语种英语
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
项目资助者National Science Fund for Distinguished Young Scholars(51625204) ; National Natural Science Foundation of China(51502319) ; Shandong Provincial Natural Science Foundation(ZR2016BQ18)
WOS类目Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号WOS:000419025200020
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qibebt.ac.cn/handle/337004/10015
专题仿生能源与储能系统团队
作者单位1.Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Qingdao 266042, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Zhonghua,Chen, Bingbing,Xu, Huimin,et al. Self-Established Rapid Magnesiation/De-Magnesiation Pathways in Binary Selenium-Copper Mixtures with Significantly Enhanced Mg-Ion Storage Reversibility[J]. ADVANCED FUNCTIONAL MATERIALS,2018,28(1).
APA Zhang, Zhonghua.,Chen, Bingbing.,Xu, Huimin.,Cui, Zili.,Dong, Shanmu.,...&Cui, Guanglei.(2018).Self-Established Rapid Magnesiation/De-Magnesiation Pathways in Binary Selenium-Copper Mixtures with Significantly Enhanced Mg-Ion Storage Reversibility.ADVANCED FUNCTIONAL MATERIALS,28(1).
MLA Zhang, Zhonghua,et al."Self-Established Rapid Magnesiation/De-Magnesiation Pathways in Binary Selenium-Copper Mixtures with Significantly Enhanced Mg-Ion Storage Reversibility".ADVANCED FUNCTIONAL MATERIALS 28.1(2018).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhonghua]的文章
[Chen, Bingbing]的文章
[Xu, Huimin]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhonghua]的文章
[Chen, Bingbing]的文章
[Xu, Huimin]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhonghua]的文章
[Chen, Bingbing]的文章
[Xu, Huimin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。