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ABSTRACT Here, we report the annotated draft genome sequences of nine different
cyanobacteria, which were originally collected from different habitats, including hot
springs, terrestrial, freshwater, and marine environments, and cover four of the five
morphological subsections of cyanobacteria.

Cyanobacteria are oxygenic photosynthetic prokaryotes that can be found at diverse
geographical and ecological locations (1). Based on morphological criteria, cyano-

bacteria can be divided into five subsections, I to V (2). Initially, a large number of
publicly available genome sequences were obtained from subsection I strains, but more
recent attempts have been focusing on taxa without representative genome sequences
(3). In terms of both fundamental research and biotechnological applications, improved
genomic coverage would be advantageous for certain lineages. In this study, nine
cyanobacterial strains were sequenced, including three hot spring strains, Chroogloeo-
cystis siderophila NIES-1031 (subsection II, originally collected from bottom mud of
LaDuke Hot Springs, MT, USA), Hydrococcus rivularis NIES-593, and Fischerella major
NIES-592 (subsections II and V, respectively, originally collected from Yukawa Hot
Spring, Japan). Three strains were of terrestrial origin: Nostoc calcicola FACHB-389
(subsection IV, originally collected from soil in Utrecht, The Netherlands), Calothrix sp.
NIES-2101, and Scytonema sp. NIES-2130 (both subsection IV and originally collected
from the University of Hyogo, Himeji, Japan). Two strains belonging to subsection III
were originally collected from freshwater, Leptolyngbya sp. NIES-30 from a paddy field
in Akita, Japan, and Phormidium ambiguum NIES-2119 from a pond in northeast Brazil,
whereas Oscillatoria rosea NIES-208 (subsection III), a marine isolate, was originally
collected from Asaji Bay, Mitsushima, Japan. All strains were cultured in 500-ml flasks
containing 300 ml of medium, bubbled with sterile air, and illuminated with 30 to
50 �mol photons m-2 s-1 white light in medium BG11 (4), except for Oscillatoria rosea
NIES-208, which was cultivated in A� medium (5).

Genomic DNA was extracted from exponential-growth phase cells using the EZ-10
plant genomic DNA purification kit (Sangon Biotech, China). Extracted genomic DNA of
Oscillatoria rosea NIES-208, Nostoc calcicola FACHB-389, Fischerella major NIES-592, and
Hydrococcus rivularis NIES-593 was sheared to ~500-bp fragments and then sequenced
using the paired-end protocol of the Illumina HiSeq 2000 system (2 � 100 bp). The
other five strains were sequenced with a fragment size of 300 to 500 bp using the
paired-end protocol of Illumina MiSeq (2 � 300 bp). Adapter sequences were removed
and low-quality ends trimmed using Trimmomatic version 0.33 (6), with a minimum
Phred score of 20 in a sliding window of 4. Reads �20 nucleotides (nt) were used for
de novo assembly using SPAdes version 3.9.0 (7) in “--meta” mode with default
parameters. Contigs �2 kb were binned using MaxBin version 2.2.1 (8), and the
completeness and contamination were assessed using CheckM version 1.0.5 (9). Con-
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tigs binned to Cyanobacteria were scaffolded using BESST version 2.2.4 (https://github.
com/ksahlin/BESST) and FinishM version 0.0.9 (https://github.com/wwood/finishm) and
then polished using Pilon version 1.20 (10). Scaffolds were taxonomically classified
using Kaiju (11) and PhyloPythiaS� (12). Those not assigned to Cyanobacteria were
manually checked using BLASTN (13), and contaminants were removed. The final
assemblies were annotated using the NCBI PGAAP (14).

Accession number(s). The draft genome sequences of the nine cyanobacterial
strains have been deposited as NCBI whole-genome shotgun (WGS) projects at DDBJ/
EMBL/GenBank under the accession numbers listed in Table 1; the versions described
in this paper are the first versions.
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TABLE 1 Genome features and GenBank accession numbers of the strains

Strain Habitat Biosample no. Accession no. Genome size (Mb) Coverage (�)

Oscillatoria rosea NIES-208 Marine SAMN05890674 MRBY00000000 4.0 102
Nostoc calcicola FACHB-389 Terrestrial SAMN05890684 MRBZ00000000 8.8 45
Fischerella major NIES-592 Hot spring SAMN05890685 MRCA00000000 5.5 156
Hydrococcus rivularis NIES-593 Hot spring SAMN05890686 MRCB00000000 5.0 136
Chroogloeocystis siderophila NIES-1031 Hot spring SAMN05890687 MRCC00000000 4.9 56
Calothrix sp. NIES-2101 Terrestrial SAMN05890688 MRCD00000000 9.7 13
Phormidium ambiguum NIES-2119 Freshwater SAMN05890689 MRCE00000000 7.2 117
Scytonema sp. NIES-2130 Terrestrial SAMN05890690 MRCF00000000 9.3 44
Phormidium tenue NIES-30 Freshwater SAMN05890691 MRCG00000000 5.7 84
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