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ABSTRACT: Photoinduced excited-state energy transfer (EET) processes play a
key role in the solar energy conversion of small molecule organic solar cells. We
investigated intermolecular EET dynamics in the 2-[[7-(5-N,N-ditolylaminothio-
phen-2-yl)-2,1,3-benzothiadiazol-4-yl]methylene]malononitrile (DTDCTB) dimer
embedded in a crystal environment using full quantum dynamics, i.e., the
multilayer multiconfigurational time-dependent Hartree (ML-MCTDH) method.
Two different stacking statuses of the DTDCTB dimers, which occur along the
OA axis in the DTDCTB crystal, were considered. We built a vibronic diabatic
Hamiltonian using the projection method based on quantum mechanics/molecular
mechanics results. Different model Hamiltonians were considered in the full
quantum dynamics studies. First, reduced-dimensional models were constructed by simply including more of the important
vibrational modes. Second, we tried to construct a continuous spectral density based on the vibronic coupling strengths of
different modes and then created a set of “pseudomodes” to represent electron−phonon couplings. The dynamics results based
on these reduced models were compared with the results obtained with the full dimensional model. Our theoretical descriptions
demonstrated that ultrafast intermolecular EET dynamics takes place in the well-stacked DTDCTB dimers. This work deepens
our understanding of the photoinduced ultrafast EET dynamics of realistic organic photovoltaic systems at the full quantum
mechanical level.

1. INTRODUCTION

Organic solar cells (OSCs) are promising alternatives for
inorganic photovoltaic devices due to advantages such as
flexibility, simple processing, and low cost.1 OSCs that consist
of polymers and fullerene derivatives have achieved power
conversion efficiencies (PCEs) of over 11%.2 In addition, PCEs
of over 13% for OSCs composed of polymer-based donors and
nonfullerene acceptors were reported recently.3 Alternatively,
small molecule OSCs (SMOSCs) have also received substantial
attention due to their well-defined molecular structures, easy
purification, and better batch reproducibility compared to
polymer-based OSCs.4,5 To date, PCEs of fullerene-based
SMOSCs have already exceeded 11%.6 At the same time, the
small molecules used in SMOSCs also provide good model
systems for the theoretical study of the working mechanism of
OSCs, because they do not display very complicated
confirmations compared with long-chain conductor polymers.
The solar energy conversion of OSCs begins with photo-

absorption, by which the excitonic states of donor materials are
generated. Then, the excitons are transported to the donor−

acceptor heterojunction interface and separated into weakly
coupled hole−electron pairs. Therefore, exciton diffusion/
transfer is of great importance to the performance of OSCs.
Recent time-resolved studies7−10 determined that efficient
charge generation may occur on a subpicosecond time scale.
This readily infers that photoinduced exciton transport between
donor compounds should also occur in an ultrafast time scale
and perhaps within the subpicosecond domain. Many
experimental investigations have confirmed that ultrafast
excited-state energy transfers (EETs) occur in electron-donor
materials in polymer-based OSCs11−14 and SMOSCs.15−17

Extensive theoretical efforts have also been undertaken to
understand EET in OSCs.18−28

Recently, the 2-[[7-(5-N,N-ditolylaminothiophen-2-yl)-2,1,3-
benzothiadiazol-4-yl]methylene]malononitrile (DTDCTB)
based OSCs have received great research interest due to their
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relatively high PCEs.29−34 Time-resolved experiments have
demonstrated that ultrafast charge separation occurs (∼100 fs)
in the DTDCTB/fullerene heterojunction films.30 This implies
the occurrence of ultrafast EET among donor compounds after
photoabsorption. Systematic theoretical studies on different
aspects of DTDCTB-based SMOSCs have been per-
formed.31−34 The calculations indicated that the transition
densities of low-lying adiabatic excited states are delocalized
over the entire stacked DTDCTB dimers/trimers, and such
delocalization increases exciton diffusion and further facilitates
ultrafast charge generation.32 Such delocalization also implies
strong electronic couplings between different DTDCTB
monomers, implying the strong possibility of ultrafast
intermolecular EET dynamics in DTDCTB aggregates. The
simulation of the morphology under different deposition
growth conditions33 clarified that the crystal structure of
DTDCTB is well maintained in the formation of DTDCTB/
fullerene heterojunctions. Overall, these works imply that
ultrafast intermolecular EET may occur in well-stacked
DTDCTB aggregates.
To provide some preliminary understanding of EET

dynamics in DTDCTB aggregates, we may rationally start
from the stacked dimer systems. The crystal environment may
play an important role here. In this work, we investigated EET
dynamics in DTDCTB dimers embedded in a crystal
environment using quantum dynamics. Two different closely
stacked DTDCTB dimers were considered, because they
should represent the most efficient mechanisms for EET in
the DTDCTB crystal. The diabatic model was constructed
using the wave function projection method, and nuclear
motions were described by normal mode coordinates. The
parameters in the diabatic Hamiltonian were obtained by
electronic structure calculations with the ONIOM approach.
After the construction of a diabatic Hamiltonian, the multi-

mode EET dynamics were studied by the multilayer multi-
configurational time dependent Hartree (ML-MCTDH)
method. This work deepens our understanding of ultrafast
EET dynamics in SMOSCs.
This article is organized as follows. In section 2, theoretical

methods are introduced, including the construction of the
diabatic EET Hamiltonian, electronic-structure calculations and
quantum dynamics, etc. The results and a discussion are given
in section 3, followed by our conclusion and outlook in section
4.

2. METHODS

2.1. System. In this work, we investigated excited energy
transfer in dimers composed of two closely stacked DTDCTB
molecules embedded in a crystal. The chemical structure of
DTDCTB is shown in Figure 1a. Although different aggregative
statuses occur in the DTDCTB crystal, well-arranged π−π
stacking patterns are found along the OA axis, as shown in
Figure 1b. In principle, EET along such a direction should be
most efficient because of the closely packed face-to-face
stacking status. For other aggregative statuses, the intermo-
lecular distance is much longer, and thus EET dynamics should
not be very efficient. In this work, we mainly focused on the
ultrafast intermolecular EET dynamics of the π−π stacking
DTDCTB dimer along the OA axis.
The two different configurations of π−π stacking DTDCTB

dimers along the OA axis, shown in Figure 1c,d, are denoted
dimer I and dimer II. In dimer I, the thiophene moiety of one
monomer faces the benzothiadiazole moiety of the other
monomer. In the crystal, the thiophene−benzothiadiazole
separation measured by their interplane distance is approx-
imately 3.31 Å. In dimer II, only the benzothiadiazole moieties
of the two monomers face each other, and their distance is a
little larger, 3.38 Å. The isolated dimer geometries are quite

Figure 1. (a) Chemical structure of the DTDCTB molecule. (b) DTDCTB crystal structure and the OA axis. (c) Dimer I. (d) Dimer II.
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different from those in the crystal. For example, a large
deviation is obtained for the dihedral angle C(a)−C(b)−C(c)−
C(d) (177° in the isolated dimer and 137° in the crystal;
chemical structure of the DTDCTB molecule with the four
labeled C atoms is given in Figure 1a). Thus, in this work, we
consider DTDCTB dimers embedded in a crystal environment.
2.2. Diabatic Hamiltonian. The diabatic Hamiltonian to

describe EET transfer reads

∑ ∑α α α β

= +

= | ⟩⟨ | + | ⟩⟨ |
α

α
α β

αβ
≠

H T V

V V V

(d)
nuc el

(d)

el
(d)

(1)

where Tnuc denotes the kinetic energy of the nuclear degrees of
freedom and Vel

(d) represents the electronic Hamiltonian. Vα

denotes the energy of excited state α, and the off-diagonal
element Vαβ characterizes the interstate coupling. In the
diabatic representation, the electronic states |α⟩ correspond
to the local excited state (LE) localized in one monomer of the
DTDCTB dimer. To estimate electron−phonon couplings
(vibronic couplings), small nuclear displacements were
considered within the normal mode approximation. For
simplicity, dimensionless normal coordinates Qi with associated
frequencies ωi were used to represent the diagonal elements of
the diabatic Hamiltonian, namely

∑ ∑ω κ= + +α α
αV E Q Q

1
2 i

i i
i

i i
2 ( )

(2)

where Eα are energies of the electronic states at the reference
geometry. κi

(α) represent the first-order intrastate vibronic
couplings. We neglect the frequency shift and the Dushinsky
rotation in this work. The diabatic couplings are treated as
constants, because this approximation should already capture
the leading contribution of interstate couplings. The Hamil-
tonian model is a typical spin-boson one that was extensively
studied by previous works in the framework of MCTDH.35−37

Because each LE state is on one monomer, each LE state is
mostly affected by the local modes of that monomer. In
addition, considering the symmetry of the dimer structures, we
only use the normal mode of a monomer embedded in crystal
to calculate κi

(α) of an LE state and use the same parameter to
describe the vibronic coupling of the other LE state. This is
equivalent to assuming that different LE states couple to
different bath modes.
2.3. Determination of Parameters in the Diabatic

Hamiltonian. The parameters were determined by the quasi-
diabatization scheme on the basis of electronic structure
calculation data. Because a similar scheme has been applied
successfully for charge and exciton transfers in organic solar
cells,38−44 only a brief description is given here.
Adiabatic states |Ψj

(a)⟩ can be expanded as a linear
combination of the diabatic states |Ψi

(d)⟩, i.e.

∑|Ψ ⟩ = |Ψ ⟩tj
i

i ij
(a) (d)

(3)

The reference geometry is chosen where adiabatic and diabatic
states are identical. The electronic states at the reference
geometry are called reference states. By projecting adiabatic
states onto reference states, we obtain the nonorthogonal
adiabatic−diabatic transformation matrix T̃ with elements tĩj, i.e.

̃ = ⟨Ψ |Ψ ⟩tij i j
(ref) (a)

(4)

where |Ψi
(ref)⟩ denote the reference states. In practice, when we

simply enlarge the intermolecular distance of an isolated dimer,
the adiabatic wave functions are a good approximation to
diabatic ones. T̃ is orthogonalized using

= ̃ ̃ ̃† −T T T T( ) 1/2
(5)

where T is the orthogonal matrix with elements tij. Then, the
diabatic Hamiltonian matrix can be written as

= †V TV Tel
(d)

el
(a)

(6)

where Vel
(d) and Vel

(a) are the diabatic and adiabatic electronic
Hamiltonian matrices, respectively. Thus, Vα and Vαβ were
readily obtained from the diabatic electronic Hamiltonian
matrix. κi

(α) were obtained from the gradients of the diabatic
electronic states at the equilibrium geometry of the system.

2.4. Vibronic Couplings and Spectral Density. In the
present work, two approaches were taken to represent the
vibronic couplings.
The vibronic couplings can certainly be represented by the

first-order intrastate couplings κi
(α) over a group of discretized

normal modes. In the ML-MCTDH study, we may simply
construct the diabatic vibronic Hamiltonian including all
important normal modes. This directly provides a solution
accessing the accuracy of the full-dimensional limit.
Alternatively, electron−phonon coupling may also be

characterized by a continuous spectral density J(ω) constructed
based on the κi

(α) of all modes. Previous works also largely
employed this idea.39,45,46 In particular, this approach is very
attractive because the continuous spectral density can help us to
build the equation of motion for quantum dissipative dynamics
based on the density operator and system-bath model.47,48 This
approach provides an alternative way to solve the quantum
dynamics of large systems with many degrees of freedom.
The spectral density was built as

∑

∑

ω π κ δ ω ω

π κ
π ω ω

= −
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=
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2
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where Δ is the width of the Lorentzian function and N0 is the
number of normal modes.
Following the suggestion in previous works,39 the value of Δ

is taken as the root-mean-square (RMS) of the frequency
spacing of all modes. We chose two values for Δ (Δ1 and Δ2)
in the construction of the spectral density. The first value Δ1 =
0.010 eV is very close to the RMS of the frequency spacing of
all modes. Because there are only a small number of normal
modes in the frequency region of ω > 1800 cm−1 and most of
them show very minor vibronic couplings, we also computed
the second value Δ2 = 0.002 eV close to the RMS of the
frequency spacing without considering the modes in the high-
frequency (ω > 1800 cm−1) domain.
Starting from the continuous spectral density, we constructed

a group of pseudo phonon modes with an arbitrary number of
modes N. The electron−phonon coupling κps,i of each
pseudomode with frequency ωps,i is given by

κ
π

ω ω= Δ⎜ ⎟⎛
⎝

⎞
⎠J

2
( )i ips, ps, ps

1/2

(8)
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where Δωps is the frequency interval between two adjacent
pseudomodes, which defines the Poincare ́ recurrence period τp
= 2π/Δωps. For t < τp, the observed dynamics are effectively
irreversible. Thus, we map the original multimode Hamiltonian
to a new diabatic Hamiltonian including many pseudomodes
with equal frequency spacing. For illustrative purpose, we will
use “modes” to represent the normal modes or vibrational
modes in the below discussion, whereas the expression
“pseudomodes” refers to pseudomodes constructed from
discretization of a continuous spectral density.
2.5. Quantum Dynamics. 2.5.1. ML-MCTDH. In this work,

we take a powerful extension of the usual MCTDH approach,49

ML-MCTDH,50−56 to simulate the quantum dynamics. As a
rigorous variational approach, ML-MCTDH can give accurate
solutions of full quantum dynamics for large systems with
thousands of degrees of freedom.53,54 The original MCTDH
equation of motion is

∑ ∑ ∏ φΨ = ···
κ

κ
κ

= = =
κ

Q Q t A t Q t( , ..., , ) ( ) ( , )f
j

n

j

n

j j

f

j1
1 1

,...,
1

( )

f

f

f

1

1

1

(9)

where Q1, ..., Qf are the degrees of freedom (DOFs). Aj,...,jf

denote the time-dependent expansion coefficients. φjκ
(κ) denote

the time-dependent basis functions that are called single
particle functions (SPFs). The structure of the equations of
motion (EOMs) of ML-MCTDH is very similar to the usual
MCTDH equations, whereas the SPFs in ML-MCTDH are
expanded recursively as a combination of the time-dependent
basis functions. The recursive expansion is
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where l denotes the layer depth; κ1, ..., κl−1 denote the indices of
the logical degrees of freedom starting from each node on the
top layer down to a particular primary coordinate. Therefore, a
tree structure can be constructed to represent the wave
function in ML-MCTDH. The EOMs can be obtained applying
the recursive algorithm provided by Manthe.55,56 Essentially,
the ML-MCTDH is much more powerful due to its arbitrary
layering schemes, which is by nature a tensor decomposition
method. All ML-MCTDH calculations in this work are
performed using the Heidelberg MCTDH package.57

2.5.2. Initial Condition. The initial wave packet ψ (t = 0) is
obtained by vertical excitation of the ground vibrational level of
the electronic ground state to a local excited state (LE1) on one
subunit of a DTDCTB dimer according to the Condon
approximation. The diabatic population and the electronic
coherence are represented by the diagonal elements Pi,i(t) and
the off-diagonal elements Pi,j(t) of the reduced electronic
density matrix, i.e.

∫ϕ ϕ ρ ρ= | ⟩⟨ | ̂ =P t t Q t Q( ) Tr { ( )} ( , ) di j b j i i j, , (11)

where the density operator is defined as ρ̂ = |ψ(t)⟩⟨ψ(t)| and
the trace (Trb) is over all vibrational degrees of freedom.
2.6. Electronic Structure Calculation Details. All

electronic structure calculations are performed using the
Gaussian 09 package. The calculations of the electronic ground

state and excited states were performed based on the ONIOM
approach. A two-layer model was adopted for the ONIOM
calculations. The high layer was treated by density functional
theory (DFT) and time-dependent DFT (TDDFT). The long-
range correction functional CAM-B3LYP and the 6-31G* basis
set were used in DFT and TDDFT calculations. The DTDCTB
dimer was chosen as the high layer in the excited state
calculations. The environment composed of adjacent
DTDCTB compounds was treated as the low layer described
by the universal force field (UFF). The geometry of the low
layer was fixed in the calculations.
To perform the diabatization procedure, the reference

geometry defined in section 2.3 was chosen by simply taking
the structure of the environment-free or isolated dimer with a
very large intermolecular distance. Then, excited state
calculations of the reference geometry were performed using
TDDFT at the same level that was used in the high layer of the
ONIOM calculations of the embedded system.
Due to the symmetry of the two dimer structures, the normal

mode calculations were performed only by considering the
DTDCTB monomer embedded in the environment. By such a
construction, we can take all parameters obtained from
electronic structure calculation and diabatization, simply
include more compounds to build the diabatic model of
DTDCTB aggregates, and then study EET in more
complicated systems.

3. RESULTS AND DISCUSSION
3.1. Characterization of the System. In this work, we

perform a quantum dynamics investigation on the EET
dynamics of DTDCTB dimers embedded in a crystal
environment. Two typical DTDCTB dimers, dimer I and
dimer II [along the OA axis of the crystal in Figure 1], are
considered. The two dimer structures of the ground state
energy minimum geometry are nearly identical to the original
structures in the primitive crystal.
The electronic state site energies and the intersite couplings

in the diabatic Hamiltonian are given in Table 1. The computed

site energies of LE states in the two dimers are all identical,
which is in accordance with the localized properties of LE
states. The intersite electronic coupling in dimer I is larger than
that of dimer II, because dimer I has a smaller interplane
distance and more π−π overlap between monomers.

3.2. Vibronic Coupling. The contribution from the
vibronic coupling of each mode to EET is characterized by a
shift of the potential minimum, Δxi, along each mode

κ
ω

Δ =
| |α

xi
i

i

( )

(12)

which is given in Figure 3a. There are two important modes
with Δxi > 0.6 near 1500 cm−1. This region corresponds to the
in-plane ring deformation of ring moieties (Figure 2) that plays

Table 1. Elements of the Electronic Hamiltonian Matrix of
the Two Typical Dimers, i.e., Energies Eα of the Two States
and Their Couplings Vαβ (in eV)a

dimer ELE1
ELE2

VLE1,LE2

I 2.354 2.354 0.136
II 2.354 2.354 0.091

aLE represents the local excited state.
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a major role in EET. In the frequency domain from 200 to 1500
cm−1, a few modes display visible electron−phonon couplings
of Δxi > 0.3, which should be considered in the treatment of
EET dynamics. Most modes with frequencies larger than 1800
cm−1 show very minor electron−phonon couplings. Only two
modes relevant to CN bond stretching motions show small
couplings (Δxi > 0.1). Each of these relevant modes is given in
Appendix I.
It is well-known that a low-frequency mode is not well

described by the normal mode approximation.58 In addition,
because the system is embedded in the environment, the
normal modes are constructed using a partial Hessian with fixed
environmental atomic positions. Thus, the low-frequency
modes are not reliable. Our preliminary calculations indicate
that the pure electronic dynamics governed by electronic
coupling V12 in the present systems are much faster than the
period of the vibrational mode with low frequency of ∼200
cm−1. Previous works indicated that the influence of low-
frequency modes on ultrafast nonadiabatic dynamics is very
minor due to their different time scales.59,60 Thus, we do not
consider the low-frequency mode in the dynamics calculations.
The continuous spectral densities J(ω) without the inclusion

of low-frequency modes (ω ≤ 200 cm−1) are shown in Figure
3b. The curve with Δ1 = 0.010 eV displays a smooth feature
with one big peak at approximately 1500 cm−1, whereas the one
with a smaller Δ (Δ2 = 0.002 eV) shows fine features with
several distinct peaks. The continuous spectral densities are
rediscretized to give pseudo phonon modes for the different
mode numbers (N = 19, 57, 76) associated with different Δω
values [Δω = 0.02, 0.0066, 0.005 (unit = eV)]. Because we use
the normal mode of the monomer to set up the vibronic
couplings, the total number of modes in the dimer should be
2N. In total, 38, 114, and 152 pseudomodes were involved in
the ML-MCTDH calculations.
3.3. EET Dynamics. We simulated the ultrafast EET

dynamics of the DTDCTB dimer embedded in a crystal using
ML-MCTDH. In the first step, the most intuitive way was

considered. We tried to perform the MCTDH calculation on
the reduced model system by including several important
modes characterized by large Δxi. We included more and more
modes into the model Hamiltonian according to a different
cutoff of Δxi, until finally the full-dimensional model (without
modes with extremely low frequencies) was treated explicitly.
We need to indicate that the time scales of many important
modes, such as modes near 1400−1700 cm−1, are comparable
to that of the pure electronic motion with Rabi oscillations.
Thus, the resonance situation should be automatically
considered by the present approaches. The results with
different numbers of important modes are shown in Figure
4a. For convenience, a reduced model with n important modes
is labeled R-1-n below. In all cases, a rapid decay and strong
recurrence of the LE1 population is observed in the very early
stage of the EET dynamics. Such a large oscillation is partially
suppressed due to vibronic couplings, when dozens of modes
(for instance 44 modes, R-1-44) are included. Such damping
effects become more pronounced with more modes (R-1-60, 60
modes). When enough modes (R-1-98, 98 modes) are
included, the time-dependent population starts to converge to
the quantum dynamics results of the full dimensional model.
Overall, the inclusion of vibrational modes provides damping
effects, eliminating the forward-and-backward EET and
stabilizing the electronic population. When enough modes are
considered, we should obtain the accurate and converged EET
dynamics.
An alternative way to build the reduced model is to discretize

the continuous spectral density J(ω). For convenience, we use
R-2-Δi-n to label such a reduced model, in which the
continuous bath spectral density is constructed with boarding
parameter Δi from discretized modes and then n pseudomodes
are generated by discretizing this spectral density. The ML-
MCTDH results of the R-2-Δ1-38, R-2-Δ1-114, and R-2-Δ1-152
models are shown in Figure 4b. All cases give a very similar
feature: the early fast oscillation of electronic dynamics, and
then the decrease of this oscillation and final population
stabilization. In particular, all models give almost identical
results for the dynamics with t < 100 fs. However, a weak
fluctuation of the electronic population occurs after t > 100 fs
for R-2-Δ1-38, whereas this feature almost disappears
completely for R-2-Δ1-114 and R-2-Δ1-152. A similar tendency
is also observed with Δ2, except that the population fluctuation
becomes slightly stronger due to the smaller value of Δ2.
Although all models with different numbers of pseudomodes
show very similar results within a short time, the R-2-Δ2-38
model gives different dynamics in the long-time simulation. As
shown in Appendix II, significant population recurrences occur

Figure 2. Views of the two most important vibrational modes.

Figure 3. (a) Shift of potential minima, Δxi, for all normal modes of the DTDCTB monomer embedded in a crystal. (b) Continuous spectral density
J(ω) with two Δ’s (Δ1 = 0.010 eV and Δ2 = 0.002 eV).
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in both 38-mode cases, regardless of whether the continuous
spectral density is constructed from Δ1 or Δ2, possibly due to
the Poincare ́ recurrence.
A comparison between the dynamics of the pure electronic

state, different reduced models (R-1-98, R-2-Δ1-152, and R-2-
Δ2-152), and full dimensional models is made in Figure 4d. As
expected, the pure electronic dynamics gives a perfect Rabi
oscillation. The rapid oscillation of electronic population is
eliminated quickly by the inclusion of dozens of vibrational
modes. Most cases give results very similar to those of the full
dimensional model, whereas the broader and smooth spectral
density seems to eliminate the population fluctuation
completely after 100 fs. The main population features of the
important-mode approach and the pseudomode approach are
similar. There are still differences between the two methods. As
shown in Figure 4a, in the important-mode approach, the result
of the reduced model with 98 modes correctly reproduces the
results of the model with all modes (246 modes). This implies
that the model with 98 modes is enough in calculations. In the
important-mode approach, the relevant modes are not equally
distributed in the frequency domain. However, in the
pseudomode approach, such as the R-2-Δ2-152 case, the

sampled frequency spacing is equal. In the population
dynamics, the latter approach seems to induce a slightly
stronger damping effect and to weaken the population
oscillation from 100 to 200 fs. In this case, the frequency
spacing is equally small and every two neighbor modes should
have very similar frequencies and couplings. The energy
redistribution over these modes may become more effective.
This may explain why the damping effect becomes a little
stronger. However, such minor difference does not modify the
main feature of the nonadiabatic dynamics. Thus, both the
important-mode approach and the pseudomode approach can
be employed to study this type of nonadiabatic dynamics, when
the continuous spectral density and pseudomodes are properly
constructed.
We tried to perform the dynamical calculation of the R-2-Δ2-

114 model at T = 300 K by the thermal weighted average of
several dynamical results starting from randomly chosen initial
conditions. As shown in Figure S1 in the Supporting
Information (SI), temperature has little effect on EET
dynamics. The reason is as follow. The current EET dynamics
takes place in the ultrafast time domain (<100 fs). At T = 300
K, only the low-frequency modes with very slow motion may be

Figure 4. (a) LE1 population in EET dynamics of dimer I including different numbers of important modes: R-1-44, R-1-66, R-1-98, and the full
dimensional model. (b) Population of LE1 in the dynamics for dimer I using Δ1 with different numbers of pseudomodes: R-2-Δ1-38, R-2-Δ1-114,
and R-2-Δ1-152. (c) Population of LE1 of dimer I in the dynamics for dimer I using Δ2 with different numbers of pseudomodes: R-2-Δ2-38, R-2-Δ2-
114, and R-2-Δ2-152. (d) Population of LE1 in the dynamics of dimer I for the pure electronic state, R-1-98, R-2-Δ1-152, R-2-Δ2-152, and full
dimension (278 modes) cases.

Figure 5. Population of the LE1 state and the real and imaginary parts of the electronic coherence of the R-2-Δ2-152 model for dimer I (a) and dimer
II (b).
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easily excited, while their time scale is slower compared with
the ultrafast electronic motions. The modes with extremely low
frequencies (<200 cm−1) are not considered in our model.
Except for them, the modes with frequencies less than 800
cm−1 display very weak vibronic couplings. Overall, the thermal
excitation of the low-frequency modes should have rather less
contribution to the current ultrafast nonadiabatic dynamics.
Although the low-frequency modes only have minor

dynamical effects here, they can play some roles in the realistic
systems due to the static effects. The motion of low-frequency
vibrational modes may result in different stacking geometries
instantaneously. Also, due to their very slow motion, we can
assume that the very fast EET dynamics happens at these
instantaneous geometries by freezing the low-frequency
motions. The discussion of this static disorder is very
challenging, which is beyond the scope of the current work.
Overall, the low-frequency modes might have a potential
influence on the EET dynamics, when the electronic dynamics
occur within a similar time scale to the vibrational motions or
the static disorder is considered.
The LE1 population and LE1/LE2 electronic coherence of

dimer I in the R-2-Δ2-152 case are given in Figure 5a. The real
and imaginary parts of the electronic coherence display an
obvious oscillation in the early stage of EET dynamics (within
40 fs), which is consistent with the time-dependent LE1 state
population feature. The real part becomes nearly flat, and the
imaginary part displays weak oscillation after ∼70 fs. This result
indicates that the weak recurrence of electronic population with
time is in accordance with the residual LE1/LE2 electronic
coherence. After 120 fs, the imaginary term decays completely
to zero and the real part holds a constant value, −0.4. As a
result, the LE1 population starts to stabilize near 0.5. Thus, it is
clear that the ultrafast EET dynamics is almost completely
governed by the electronic coherence. The introduction of
vibrational modes brings significant damping effects that
quickly eliminate the electronic coherence oscillation and
further stabilize the electronic population.
The only difference between the Hamiltonian models of

dimer I and dimer II is that the latter displays a smaller
electronic coupling value. We performed ML-MCTDH
calculations on dimer II using the convergence conditions of
dimer I (R-2-Δ2-152). The dynamics are rather similar, and
thus we only summarize the main results in Figure 5b. Because
of the smaller coupling of the two LE states in dimer II, the
damping effect by the vibrational modes is more dramatic and
the dynamics have weaker oscillation features (oscillation
period and amplitude) than dimer I. As expected, the EET
dynamics of dimer II are also relevant to electronic coherence.
It is possible to provide further insight into the present EET

dynamics based on an analysis of the time scales of electronic
and nuclear motion. Taking dimer I as an example, the
electronic coupling Vαβ is 0.136 eV. According to the vibronic
couplings of all vibrational modes, we noticed that two types of
modes give an important contribution to the present EET
processes. The first type of important mode is the low-
frequency mode with the parameter Vαβ/ωc ≫ 1, which defines
a slow bath with respect to the fast electronic motion.36

Previous works demonstrated that ultrafast dynamics are not
influenced by these low-frequency modes.59,60 The second type
of important mode shows that Vαβ and ωc are comparable, and
thus the electronic and vibrational dynamics fall into the same
time scale.36 This indicates that the present EET dynamics are
essentially non-Markovian, and thus ML-MCTDH is the

preferred method for obtaining the precise theoretical treat-
ment.
The DTDCTB molecule is one of the efficient donors in

small molecule organic solar cells (SMOSCs). The under-
standing of exciton dynamics not only explains the physical
insight into photoinduced reaction mechanisms, but also
provides some ideas of rational design of organic photovoltaic
compounds. In organic solar cells, the high energy conversion
efficiency indicates the efficient charge separation at donor−
acceptor bulk heterojunctions, while the fast exciton transport
to donor/acceptor interfaces is a prerequisite for such a step.
Previous works suggested that the low-lying adiabatic excited
states of stacked DTDCTB dimers/trimmers are delocalized
over the entire systems, and such delocalization increases
exciton diffusion and further facilitates ultrafast charge
generation.32 However, it is very challenging to study the
nonadiabatic dynamics of these realistic systems, because the
whole systems include several donor/acceptor compounds and
a huge number of nuclear nuclear degrees of freedom. To
conquer this problem step by step, we first studied the EET
dynamics in the DTDCTB dimers embedded in crystal.
Although the current model systems are rather simple, several
interesting conclusions can be drawn from this work:
1. Interestingly, we found the EET dynamics is ultrafast

(<100 fs). This implies that the exciton energy transfer to the
interface is indeed very fast, giving a high chance to result in the
efficient charge separation.
2. Electronic coherence maintains in a very long time range.

Before the vanishing of electronic coherence, the exciton
should be delocalized over several donor molecules. If the
charge-transfer dynamics takes place within such a time scale,
we should consider the EET/ET mixed dynamics for the
proper treatment of the exciton dynamics.
3. Several modes in the frequency region from 1300 to 1700

cm−1 strongly couple to electronic states. These modes
correspond to the double-bond stretching motions in rings.
In current conjugated systems, these vibrations change the
bond lengths of the conjugated ring, which influence the
energies of the π-bonds. Because both LE and charge-transfer
(CT) excitation are related to the π-bonds of the ring, these
modes display strong intrastate vibronic coupling on the LE
and CT states. When the electronic dynamics takes place in a
similar time scale as the vibrational motions of these modes, the
efficient EET dynamics should be achieved. As we know, the
time scale of pure electronic motion is determined by energy
gaps and electronic couplings. Thus, if these properties are
adjusted by rational design, we may get the efficient EET
dynamics that is the prerequisite of efficient solar energy
conversion.
Beside the above understandings, we also noticed the

following issues:
1. A large geometry difference exists between the embedding

DTDCTB geometry in crystal and its isolated geometry. For
example, a large deviation is obtained for the dihedral angle
C(a)−C(b)−C(c)−C(d) (177° in the isolated dimer and 137°
in the crystal; the chemical structure of the DTDCTB molecule
with the four C atoms labeled is given in Figure 1a). Thus, it is
highly preferable to include crystal environments in the
theoretical treatment of these systems.
2. Only a few modes are very important in the ultrafast EET

dynamics. As discussed above, the study of the nonadiabatic
dynamics in the realistic situations should include several
donor/acceptor compounds and a huge number of nuclear
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degrees of freedom. The accurate treatment of the nonadiabatic
dynamics of these realistic systems with ML-MCTDH becomes
extremely challenging. Thus, it is necessary to build reduced
models with less effective degrees of freedom, which capture
the main feature of nonadiabatic dynamics of complicated
systems. Because the current work pointed out which modes
are important, we can use this information to build the reduced
model and run ML-MCTDH calculations for the investigation
of realistic complicated systems. This is a very interesting topic
for the future.

4. CONCLUSIONS

In this work, we investigated the ultrafast EET dynamics of
DTDCTB dimers in a crystal environment using the ML-
MCTDH quantum wave packet method. The DTDCTB
dimers have two different π−π stacking geometries along the
OA axis in the DTDCTB crystal. The electronic excited state
calculations of the DTDCTB dimers were performed with the
ONIOM approach, in which the DTDCTB dimers were treated
at the CAM-B3LYP/6-31G* level and the crystal environment
was treated at the UFF level. We built the diabatic vibronic
Hamiltonian using the wave function projection method. Two
types of vibronic coupling models were constructed. In the first
model, the diabatic Hamiltonian includes several important
modes characterized by large first-order intrastate coupling
strengths. In the second model, we first construct the
continuous spectral density based on the ab initio results and
then discretize the spectral density to define several effective
pseudomodes. The quantum dynamics show consistent results
in both approaches. The pure electronic EET dynamics exhibit
Rabi-type oscillations in population dynamics and strong
electronic coherence. After the inclusion of nuclear motion,
strong quenching of coherence oscillation was observed, and
ultrafast irreversible EET dynamics were obtained. We also
noticed that a population recurrence appears in the long-time
evolution if not enough modes are included.
The present way of constructing the vibronic diabatic

Hamiltonian also allows us to build a Hamiltonian including
LE and CT states on the same footing. This opens a possibility
for studying the influence of the CT state on the ultrafast EET
processes of organic photovoltaic systems with quantum
dynamics. In addition, it is also possible to extend the current
diabatization approach to construct the vibronic diabatic
Hamiltonian of large aggregate models. For example, the
parameters of various dimers with different stacked geometries
are easily obtained using the same procedure, and then it is
possible to combine these parameters to build the diabatic
Hamiltonian of the large aggregate models. This provides a
starting point for understanding the EET dynamics in more
complex aggregates with full quantum dynamics. These topics
will be the research subjects of our further work.

■ APPENDIX

I. Deformations of Vibrational Modes
In the frequency domain from 200 to 1500 cm−1, the modes
with visible electron−phonon couplings (Δxi > 0.3) are given
in Figure 6.
Most modes with a frequency larger than 1800 cm−1 show

very minor electron−phonon couplings. Only two modes
relevant to the CN bond stretching motions show small
couplings (Δxi > 0.1), which are also given in Figure 6.

II. Long-Time Dynamics
Long-time-dynamics simulations for Δ1 and Δ2 cases were also
performed, and the results are shown in Figure 7. The Poincare ́
recurrence period τp of 114 and 152 pseudomodes are 631.5
and 833.6 fs, respectively. These results are longer than the
simulation time scale of the present EET dynamics, so the
dynamics may be viewed as an irreversible process. However,
Figure 7 shows that the 38-mode models give the recurrence of
the electronic population at ∼200 fs, because the Poincare ́
recurrence period computed by this model is close to 208.4 fs.

III. Optimal Construction of the ML-MCTDH Tree and
Convergence Tests
The construction of a reasonable wave function expansion tree
is critical for the computational efficiency and convergence in
the ML-MCTDH calculations. Previous studies provided some

Figure 6. Views of relevant vibrational modes.
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useful principles for this purpose,21,51,59,60 which gives us some
hints to build tree expansion.
In the current work, several principles were employed to

build the tree:
1. At the bottom level, we always tried to take the modes

with similar frequencies and similar vibronic couplings to form
a branch. When we combined two lower child branches into an
upper parent branch, two child branches were also composed of
the modes with similar frequencies and comparable vibronic
couplings. This rule was employed to give the whole hierarchy
expansion layer by layer.
2. When the vibrational period of a mode is close to the time

scale of the pure electronic motion or its vibronic coupling is
larger, we assumed that this mode is important to dynamics.
We tried to put them in the upper branches and gave them
more bases. For other unimportant modes, we tried to put
them in the lower branches and gave them fewer bases.
3. We tried to run test calculations until the convergence was

reached. The eigenvalues of the density matrices at each layer,
the so-called natural populations, is one of parameters to
indicate whether the basis number is enough. In this step, we
tried to increase the number of basis functions for important
branches and also for the upper branches. If the basis numbers
of two child branches connecting to the same parent branch
were significantly different, we took some modes from the child
branch with more bases to rearrange the tree topology, and
tried to reach the case that the basis numbers of all branches
belonging to the same node are not significantly different.
When the results did not change with increasing basis number,
we assumed that the dynamics calculations were converged.
4. As a variational method, the ML-MCTDH calculations

may fail to give the correct result when improper wave function
expansion is used. It is very important to make sure that the
optimal solution is achieved in the variational treatment. We
also tried to run trees with different topologies and to compare
their results. This step helped us to make sure the optimal
converged result was really achieved.
Because the above testing calculations are rather time-

consuming and tedious, we developed our homemade
programs (based on Perl) to run ML-MCTDH calculations,
collect results, rearrange the tree topology, and increase the
number of basis functions in convergence tests. If the
population dynamics remains basically unchanged, we assume
the convergence is reached. As we know, the ML-MCTDH
expansion is not unique and the same result may be obtained
from different tree expansions. Here our homemade code
mainly focuses on the convergence of population dynamics, and
no particular constraint was added in the evolution of tree
topology except the above-mentioned principles. This indicates

that we do not take into account the physical meaning of the
final tree topology, if the convergence is achieved. In this sense,
our approach is a practical approach that only focuses on the
efficient generation of the effective and useful ML-MCTDH
trees.
The Heidelberg MCTDH package requires that the subtree

of each electronic state should be the same in its input file for
the ML-MCTDH calculations. Thus, we show the subtree (tree
A of the R-2-Δ2-114 model for dimer I) belongs to the single
electronic state in Figure S2 in the SI. The corresponding input
files of ML-MCTDH calculations are given in the SI. Two trees
with different topologies (named tree B and tree C) were also
built. Tree B includes several tribranches in the expansion. Tree
C includes several tri/tetrabranches, and the mode combina-
tions are used in the bottom layer. Tree A, tree B, and tree C
give the same results (Figure S3 in the SI); thus, the
convergence is fully achieved. Because three trees give identical
results, we just give the input files of the calculations with tree B
and tree C in the SI.
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