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ABSTRACT: Photoinduced excited-state electron and energy
transfer processes are crucial in biological photoharvesting
systems and organic photovoltaic devices. We discuss the
construction of a diabatic vibronic Hamiltonian for the proper
treatment of these processes involving the projection approach
acting on both electronic wave functions and vibrational
modes. In the electronic part, the wave function projection
approach is used to construct the diabatic Hamiltonian in
which both local excited states and charge-transfer states are
included on the same footing. For the vibrational degrees of
freedom, the vibronic couplings in the diabatic Hamiltonian
are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode
projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

I. INTRODUCTION

Photoinduced excited-state electron and energy transfers (ET
and EET) are widely found in biological photoharvesting
systems1−4 and organic photovoltaic devices.5−8 For example,
photoinduced charge separation plays an essential role in
organic photovoltaic devices. The EET or exciton migration is
highly relevant to the high-efficiency solar energy conversion in
both photovoltaic materials and biological light-harvesting
systems.
Over the last several decades, many theoretical frameworks

were developed to describe photoinduced ET and EET
processes, including approximate approaches, such as Marcus
theory9,10 and Förster theory,11 and more advanced theoretical
descriptions of nonadiabatic dynamics. In these treatments, the
use of the diabatic representation is often required,12−14 both to
provide an intuitive physical picture and to avoid a possible
singularity of nonadiabatic couplings in the adiabatic
representation. However, most electronic−structure calcula-
tions are performed in the adiabatic representation. Thus, it is
necessary to seek a suitable approach for the construction of a
diabatic model in the basis of ab initio data. The understanding
of nonadiabatic dynamics also requires the proper treatment of
electron−phonon coupling or vibronic coupling. Thus, the
construction of a diabatic Hamiltonian including multiple
electronic states and vibronic couplings is rather essential.
In the diabatic representation, the ET/EET processes involve

two types of states, i.e., the locally excited (LE) states and the
charge-transfer (CT) states. Let us take a dimer system to

illustrate their definitions. When an electronic transition is
localized in one monomer, the resulting electronic state is the
LE state. The CT state corresponds to the electronic transition
from the occupied orbitals of one monomer to the unoccupied
orbitals of the other monomer. In real systems, ET and EET
processes may strongly mix with each other. Thus, a proper
description of the ET/EET processes requires the construction
of the diabatic model Hamiltonian in which LE and CT states
are treated on equal footing and vibronic couplings are taken
into account.
Generally, there are two categories of methods for perform-

ing the diabatization,12 i.e., the direct diabatic-state con-
struction4,15−48 and the adiabatic-to-diabatic transforma-
tion.20,49−105 In the first approach, the diabatic states are
constructed explicitly before the calculations of the adiabatic
electronic wave functions. For example, in the description of
excited-state ET and EET processes, one approach is to take
individual fragments as building blocks of the whole system.
The excitation within an individual fragment is regarded as an
LE state. The coupling between two LE states is evaluated using
approximate methods.4,15−25 However, in this framework, the
inclusion of the CT state is quite challenging.24,26 It is also
possible to “create” the LE or CT states by construction under
certain constraints such as electron or density localization.
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These approaches include the electron-localized broken
symmetry wave functions stemming from unrestricted Har-
tree−Fock (UHF) theory,27−29 constrained density functional
theory (CDFT),30−35 and ΔSCF-based methods.36−39 Re-
cently, the multistate density functional theory (MSDFT) has
shown great promise in the construction of diabatic models for
large molecular systems and aggregates40−45 because this
approach constructs the diabatic states directly and allows
explicit estimation of interstate couplings.
In the adiabatic-to-diabatic scheme, the wave functions and

energies of electronic states are first obtained in the adiabatic
representation, and then the diabatic model is constructed via
the adiabatic-to-diabatic transformation. In polyatomic systems,
the strict adiabatic-to-diabatic transformation can only be
defined when all electronic states are included to form the
completed Hilbert space.49 In practice, it is still possible to
define the approximated diabatic states and the relevant
adiabatic-to-diabatic transformation within a subspace spanned
by the involved electronic states when these states do not
strongly couple with other nonrelevant electronic states.49 Such
diabatization methods are grouped into various classes.12 In the
simplest system of two equivalent fragments, a two-state model
simply shows that the diabatic coupling is the half of the
adiabatic energy difference at the minimum adiabatic energy
gap. In more complicated situations, the analytical function
form of each element in the diabatic Hamiltonian may be
assumed first. All parameters in the diabatic model are obtained
by fitting of ab initio data12,50,83,84,86−91 of the potential energy
surface (PES) and other quantities. Although these methods are
very practical, analytical expressions of all elements of diabatic
Hamiltonian matrix must be assumed. This becomes very
difficult in high-dimensional cases. Alternatively, the adiabatic-
to-diabatic transformation is constructed by the unitary
transformation of the electronic basis to eliminate the
nonadiabatic couplings.12,49,51−53 In addition to a high
computational cost, this treatment displays a numerical
problem, that is, different integral pathways to the same ending
point may result in different adiabatic-to-diabatic trans-
formations.12 The third diabatization approach is to construct
the wave function itself or the associated physical quantities as
smooth functions of nuclear coordinates.12,20,54−80,96−98 Several
diabatization approaches based on this idea were proposed in
the treatment of photoinduced ET or EET in complex systems,
which include the generalized Mulliken−Hush (GMH)
method65−67 and its variants,20,67−72 localized diabatization
algorithms,73,74 and the diabatization method based on
maximizing the weight of either the LE or CT configuration.64

Although there are many researches on diabatization and
various diabatization methods were proposed, we still see that
s om e wo r k s f o c u s o n t h i s t o p i c i n r e c e n t
years.26,45,80,86−89,92,97,104 This implies that diabatization is
still very challenging. Recently, Tamura, Burghardt, and co-
workers75,76 developed a rather practical diabatization method
based on the wave function projection approach for time-
dependent density functional theory (TDDFT). In this
approach,75,76 the reference wave functions with pure LE and
CT characters are defined, and then the projection of adiabatic
states onto reference wave functions gives the adiabatic-to-
diabatic transformation. In fact, more advanced diabatization
approaches based on the wave function projection method have
been proposed by several groups,54−63,81,82 such as the groups
of Köppel and Cederbaum,81,82 Domcke,54,55 Ruedenberg,57,58

and Truhlar.59−61 These more rigorous approaches involve the

diabatization of both molecular orbitals (MOs) and electronic
wave functions. Loosely speaking, the method of Tamura,
Burghardt, and co-workers75,76 may be treated as a
simplification of these more rigorous diabatization approaches,
and this method is very practical for the exploration of ET/EET
processes in large molecular complexes. Here, two closely
relevant works that treated photoinduced ET/EET problems
should be mentioned. Voityuk80 proposed a diabatization
scheme based on the transition density in the atom orbital
(AO) basis to calculate electronic coupling for photoinduced
ET/EET. The quasidiabatic states of reference systems and the
adiabatic states of closed stacked systems were all represented
by the transition density in the AO basis. Then the
transformation between two sets of transition densities finally
defines the adiabatic-to-adiabatic transformation. One tricky
point is that the reference states are nonorthogonal, and thus,
some additional orthogonalization should be performed in
numerical implementations. Köppel and co-workers77−79

proposed a method for constructing vibrational diabatic
Hamiltonian of homodimers. The delocalized diabatic states
of dimer are defined as the symmetric and antisymmetric linear
combinations of the localized diabatic states of each monomer.
This procedure is very useful in the treatment of homodimers.
The extension of this approach to treat many strongly coupled
LE and CT states in general stacked systems (with same or
different building units) is not fully trivial.
In the construction of a vibronic diabatic Hamiltonian, the

other important question is the description of electron−
phonon coupling or vibronic couplings. For the molecular
aggregates, normally the electron−phonon couplings are
represented by the spectral density,13 which may be extracted
from the Fourier transformation of the autocorrelation function
reflecting the fluctuations of energies or couplings.106 This
approach requires long-time molecular dynamic simulations,
and great caution must be used in the treatment of detailed
balance and other issues. Alternatively, it is also possible to use
normal mode coordinates to compute the electron−phonon
couplings.25,75,107,108

In the current work, we focus on a few of points. (1) Tamura,
Burghardt, and co-workers75,76 mainly discuss their diabatiza-
tion method based on TDDFT. We seek a seamless
combination of this diabatization approach with additional
electronic structure-based methods in which the CIS109

(configuration interaction single)-type wave functions can be
constructed approximately. For example, we show that the
combination of the projection approach and other electronic
methods, such as ADC(2),110,111 is straightforward. (2) We
wish to carefully examine the numerical performance of the
projection-based diabatization method in the treatment of ET
and EET problems. Several implementation details are carefully
discussed, including the proper selection of the reference wave
function and the number of electronic states involved in the
diabatization. (3) We discuss a computational protocol based
on the vibrational mode projection idea to estimate the vibronic
couplings in a diabatic Hamiltonian in the set of pseudonormal-
mode coordinates localized on each individual building block.
For a system with several chromophores, we show that this
method not only gives the first-order electron−phonon
couplings in the localized pseudonormal-mode coordinates
but also provides useful information on the second-order
intramode and intermode potential couplings. (4) We pay
attention to the dependence of the constructed diabatic model
on electronic structure methods. Because we combine the
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projection-based diabatization method with different electronic-
structure methods, we can check the dependence of diabatic
energies, interstate diabatic couplings, and vibronic couplings
on computational methods. Overall, the LE or CT states are
localized diabatic electronic states that can be constructed by
the projection method in the basis of delocalized adiabatic
states. The vibronic coupling is constructed in the localized
pseudonormal-mode coordinates. In this way, the vibronic
coupling terms of the LE or CT states may only be relevant to
the vibrational coordinates of the relevant monomer. This
approach shows two advantages. First, after obtaining the
diabatic Hamiltonian in a dimer system, it is easy to add more
relevant matrix elements to generate the diabatic Hamiltonian
of a larger aggregate system. Second, different electronic states
may couple to different vibrational modes or “baths” for large
systems under this construction. The advantage is that many
quantum dissipative dynamical methods can be directly
employed to such problems because these theoretical
approaches normally require that each state is coupled to its
own individual bath.112−114

This article is organized as follows: In Section II, theoretical
methods are introduced, including the diabatic Hamiltonian,
the projection diabatization method, the estimation of vibronic
couplings in the basis of localized modes, and electronic−
structure calculations. The results and discussion are given in
Section III. Our conclusion is presented in the last section.

II. THEORY
II.A. Diabatic Hamiltonian. The diabatic electronic

Hamiltonian is set up as

∑ ∑ψ ψ ψ ψ= | ⟩ ⟨ |+ | ⟩ ⟨ |
α

α
αα

α
α β

α
αβ

β
≠

V V Vel
d( ) ( ) ( )

(1)

where |Ψα⟩ and |Ψβ⟩ represent the diabatic states, and LE and
CT states are involved. V(αα) denotes the energy of each
diabatic state, and V(αβ) is their interstate coupling.
II.B. Projection Method for Diabatization. We assume

that it is possible to find a particular molecular geometry where
the adiabatic and diabatic states are identical. At this geometry,
adiabatic electronic states should display the pure localized
excitonic (LE) or charge-transfer (CT) character. The
electronic wave functions at this geometry are defined as the

reference states Ψ| ⟩i
(ref) .

The adiabatic states Ψ| ⟩j
a( ) at the complex’s actual geometry

can be expanded as the linear combination of diabatic states

Ψ| ⟩j
d( ) , i.e.,

∑ψ ψ| ⟩ = | ⟩tj
a

i
i

d
ij

( ) ( )

(2)

where tij denote the coefficients in the expansion. At the same
time, the projection of the adiabatic states onto the reference
wave functions gives ̃tij,

ψ ψ̃ = ⟨ | ⟩tij i j
a(ref) ( )

(3)

The CI-type wave functions can be expressed in terms of the
spin-adapted configuration state functions (CSFs) that are
mathematically represented by the linear combination of Slater
determinants. The elements of the Slater determinants are
molecular orbitals (MOs) that can be further expanded as linear
combination of atomic orbitals (AOs). The details of

calculations performed to obtain ̃tij are given in Supporting
Information (SI).
In principle, the above equation can be employed for any

type of electronic wave function. Similar equations also appear
in the more advanced diabatization approaches designed for
high-level correlated multireference electronic−structure meth-
ods.54−63,81,82 In the current work, we only focus on the CIS-
type excited electronic wave functions due to their low
computational cost, even for large systems. The CIS and
TDDFT/TDA methods define the CIS-type wave functions
directly;109 thus, the CI vectors and MO coefficients, as well as
the overlap matrix, are directly taken from ab initio calculations
to compute the projection according to eq 3. For TDHF and
TDDFT/RPA, we may try to create a pseudowave function
from the approximate employment of the Casida’s assignment
rule.115−120 Although such construction is not rigorous, it
works in practice because of the small contribution of de-
excitation terms. It is also possible to construct the pseudowave
function approximately from the ADC(2)110,111 calculation
based on its first-order response term.
The above projection results in a nonorthogonal trans-

formation matrix T̃ with elements ̃tij. The orthogonalization is
performed by using59

= ̃ ̃ ̃† −T T T T( ) 1/2
(4)

where T is the orthogonal matrix with elements tij. Diabatic
states are expanded as

∑ψ ψ| ⟩ = | ⟩ *tj
d

i

N

i
a

ji
( ) ( )

(5)

where N is the number of the states involved. Then, the
diabatic Hamiltonian matrix can be easily obtained as

= †V TV Tel
(d)

el
(a)

(6)

where Vel
(d) is the diabatic electronic Hamiltonian matrix and

Vel
(a) is adiabatic electronic Hamiltonian matrix.
The proper preparation of reference states is the first step in

the diabatization procedure. In practice, we generate reference
states through the electronic−structure calculations of the
stacked molecular systems at large intermolecular distances. In
principle, in the ideal case, the relevant MO should be
completely localized on a single unit. At the same time, the
electronic states should display the single LE or CT
characteristics; for instance, no mixture between different
transition components. Thus, in the ideal case, both MO and
electronic states become diabatic. In real situations, such
features exist when different molecules are used to build the
stacked systems. However, the situation becomes more
complicated if two same compounds are used to form the
stacked systems. In this case, we found that the relevant MOs
become localized, and the “diabatic orbitals” are correctly
obtained at the reference geometry in the below systems under
study. As a contrast, the localization of the electronic wave
functions may not always appear, and the electronic wave
functions are still not the “diabatic” ones. Because of the orbital
localization, each configuration state function becomes a
“diabatic” configuration, and the mixture between different
electronic characters is fully dependent on the configuration−
interaction (CI) vectors, namely
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∑ψ ψ| ⟩ = | ⟩cj
i

i ij
(a,ref) (d,ref)

(7)

where superscripts (a,ref) and (d,ref) denote adiabatic and
diabatic states at reference geometry, respectively. Here, cij is
just the CI vector. Thus, the reversed transformation of the
above equations gives the localized diabatic states.
In the following text, the intermolecular distance at the

reference configuration is defined as “reference distance” (Rref)
for simplicity. It is convenient to directly project the adiabatic
states at the geometries under study to the reference states at
the reference geometry. Previous theoretical works recom-
mended the use of the point-to-point projection proce-
dure.54−62 The adiabatic states at geometry Rref−ΔR are
projected to reference states at Rref, where ΔR should be a very
small geometry variation toward the target geometry R. Then,
the adiabatic states at Rref−2ΔR are projected to the diabatic
states at Rref−ΔR. The above steps are repeated until all
geometries are covered. We also compare the two procedures
in Section III.
II.C. Vibronic Couplings. In this work, we wish to build the

pseudonormal modes Q̃ i located at each monomer and then
construct the diabatic Hamiltonian in this set of coordinates.
For molecular aggregates, we assume that the diabatic state
energy V(αα) and the diabatic V(αβ) coupling are dependent on
Q̃ i located at each monomer and the R coordinate representing
the distance between the mass centers of the two monomers,
i.e.,

∑ ∑ω κ̃ = + ̃ ̃ + ̃ ̃αα αα αV R Q V R Q Q( , ) ( )
1
2 i

i i
i

i i
( )

0
( ) 2 ( )

(8)

∑ λ̃ = + ̃αβ αβ αβV R Q V R Q( , ) ( )
i

i i
( )

0
( ) ( )

(9)

where ω̃i and κ ̃ α
i
( ) are respectively the frequency and the

electronic-phonon coupling constant of the corresponding
mode, except for intermolecular modes. V0

(αα) is zero-order term
of diabatic energy. V0

(αβ) and λi
(αβ) are zero and first order terms

of the expansion of the diabatic coupling, respectively. In
general, electronic couplings V(αβ) between diabatic states
should be strongly dependent on R but depend weakly on Q̃ i.
Thus, V0

(αβ) should be dominant, while λi
(αβ) in principle should

be close to zero.
Several works took the vibronic couplings of the normal

modes of the ground-state minimum of each monomer, or its
cation/anion, as the modes located at each mono-
mer.25,75,107,108 The vibronic couplings are directly computed
in the basis of such localized modes, if the diabatic Hamiltonian
can be obtained along these modes. For example, Tamura and
Burghardt et al.75,76 and Köppel et al.77−79 used this idea. These
above approaches basically assume that the geometries and
normal modes remain unchanged from isolated monomers to
the building units in the stacked dimer. In reality, some
differences may appear, and it should be interesting to check
whether such geometry deformation causes the second-order
intramode and intermode potential couplings among these
localized modes. Of course, these second-order terms may be
evaluated by the displacement of different localized normal
mode coordinates simultaneously; while the computational cost
is large especially for a system with many degrees of freedom.
To evaluate this effect, we used a different approach as below.

We took a stacked dimer as a typical example to explain how
to define the pseudonormal modes of the dimer system. First,
we performed the ground-state optimization of the monomer
and computed its normal modes. Then we calculated the
ground-state equilibrium geometry of dimer. Next, we overlap
the monomer configuration to each building block of the dimer.
The proper alignment between them is obtained by the
translational and rotational movement of the monomer to
minimize the root-mean-square deviation (rmsd) between two
coordinate sets. The transformation matrix for molecular
rotation is obtained using the Kabsch algorithm.121−123 By
applying the same rotation on the dimensionless normal
coordinates of monomer, we get the pseudonormal modes of
the dimer system. Although our approach seems to also use the
normal mode of monomer to define the localized modes of the
dimer, we also considered the normal modes of the dimer
system, which are delocalized modes as well. The trans-
formation between the localized-to-delocalized modes provides
us some additional information, see below discussions for
details. Mathematically, two sets of normal modes are
represented by two high-dimensional vectors; thus, the
transformation between them may also be treated as a kind
of vector projection. In this sense, the normal-mode projection
is performed in the current theoretical treatment. Below we
give all details.
We first consider the dimensionless normal mode of the

whole dimer system. To construct the dimensionless normal
coordinates, the mass-weighted coordinates ξ are introduced as
below

ξ = My (10)

where y is the vector of the displacements in Cartesian
coordinates and M is the matrix with elements δ=M mij i ij,
where mi is the mass of corresponding atom. The trans-
formation between the mass-weighted coordinates ξ and
normal coordinates q are given as below:

ξ = Bq (11)

where the matrix B is orthogonal and normalized. Now we
introduce the dimensionless normal coordinates Q by

Ω=Q q (12)

with ω δΩ =ij i ij. We can obtain the relationship between the
displacements in Cartesian coordinates and the dimensionless
normal coordinates

Ω= − −y M B Q1 1
(13)

The similar transformation can be constructed for the
localized pseudonormal modes. Because two sets of modes
(pseudonormal modes and dimensionless normal modes of the
dimer) are both transferred from the same displacements in
Cartesian coordinates; so the delocalized-to-localized mode
transformation is as follows:

̃ =Q PQ (14)

where Q̃ and Q are dimensionless coordinates of localized
pseudonormal modes and delocalized modes, respectively. P is
the transformation matrix

Ω Ω= ̃ ̃− − −P B MM B1 1 1 (15)

Because of the existence of Ω̃ and Ω−1 in the expression, the
transformation matrix P is not orthogonal.
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Since the pseudonormal modes are constructed from isolated
monomer, the number of the delocalized modes is more than
that of the localized modes because of six intermolecular
vibrational modes. This does not affect the final transformation
because the two sets of modes (localized pseudonormal modes
and dimensionless normal modes of the dimer) are both
transferred from the displacements in Cartesian coordinates.
The electron−phonon couplings in the basis of localized

normal coordinates are given by

∑κ κ̃ =α α −P[ ]i
j

j ji
( ) ( ) 1

(16)

where κ ̃ α
i
( ) and κj

(α) are the first-order electron−phonon
couplings of the localized pseudonormal modes and the
original normal modes of the dimer, respectively. The vibronic
coupling of each mode can be characterized by the Huang−
Rhys factors13,14

κ
ω

=
̃

α
α⎛

⎝
⎜⎜

⎞
⎠
⎟⎟S

1
2i

i

i

( )
( ) 2

(17)

In order to check the dependence of the diabatic electronic
couplings V(αβ) on Q̃ i, we define a factor Si

(αβ) similar to the
Huang−Rhys factor

λ
ω

=
̃

αβ
αβ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟S

1
2i

i

i

( )
( ) 2

(18)

The frequencies of localized pseudonormal modes were
obtained via

∑ω ω̃ = − −P P[ ] [ ]ij
c

m
mi m mj

1 1

(19)

where ωm are the frequencies of the dimer. ω̃ij
c contain the

information on the second-order intramode and intermode
potential couplings among the pseudonormal modes. In this
way, we not only obtained the vibronic (electron−phonon)
couplings κ ̃ α

i
( ) but also examined the possible second-order

potential coupling terms.
In the dimer system formed by two equivalent molecules, a

simple situation may happen. When the geometry distortion
from the isolated monomer to the building unit of the dimer is
neglected, all second-order intramode and intermode couplings
may vanish completely. Then the symmetric and antisymmetric
linear combinations of two equivalent localized modes (with
the same frequency) of two monomers define two delocalized
modes (also with the same frequency). The frequency remains
unchanged in such transformation. This goes back to the simple
case discussed by previous works.14,78,79

II.D. Computational Details. Three systems were
employed to examine the performance of the diabatization
scheme, namely, the oligothiophene (quaterthiophene, OT4)
dimer, the perylene-bisimide (PBI) dimer, and the furan/
dicyanoethylene (DCNE) complex. The ground-state equili-
brium geometries were obtained using DFT. TDDFT and spin-
component scaled ADC(2) [SCS-ADC(2)] methods were used
to perform excited-state calculations. The details of the
calculations are given in Table S1 in the SI. All DFT and
TDDFT calculations were carried out using the Gaussian 09
program.124 The TURBOMOLE program125 was used to
perform the SCS-ADC(2) calculations.

III. RESULTS AND DISCUSSION
III.A. Quaterthiophene Dimer. Poly-3-hexylthiophene

(P3HT) is widely known for its important role as electron
donor in organic photovoltaic devices.126 In theoretical studies,
the OT4 oligomer is often chosen to understand the
photophys ica l and photochemica l proper t i e s o f
P3HT.75,107,127,128 The antiparallel OT4 dimer is shown in
Figure 1. The frontier MOs are completely delocalized in the

equilibrium configuration (Figure S1 in the SI). When the
distance between two monomers becomes long enough, the
relevant molecular orbitals (MO) of the OT4 dimer (Figure S2
in SI) become completely localized in one unit. In the
dissociation limit, the two lowest CT states with identical
energies are well-defined and do not contain the mixture of
different transition components. Therefore, the CT states are
diabatic. However, the two lowest adiabatic wave functions are
still the mixture of two LE transitions, and this mixture does
not vanish, even if we continue to increase the intermolecular
distance. In this case, we should use the tricks discussed in
Section II.B to generate the diabatic wave functions.
The orientation of R was defined as the distance between two

mass centers of two OT4 monomers. As shown in Figures S3
and S4 in the SI, we checked the influence of the Rref selection
and the number of the electronic states included in
diabatization. The proper setups give consistent results, except
for the minor deviation in the cases with a short Rref (8 Å) or a
large reference-state number (40 states). To balance the
computational accuracy and efficiency, Rref = 10 Å, and 20
states were selected. We also carried out the calculation by
using the point-to-point procedure with ΔR = 0.1 Å and
compared the results with those obtained for the direct
projection. Because R is a vector, in the calculation we must
carefully keep molecule orientation unchanged at different R.
This approach is necessary because we need to properly
calculate overlaps of molecular orbitals of two geometries. As
shown in Figure S5 in SI, the results obtained by these two
procedures are consistent. For convenience, the direct
projection procedure is chosen in the further analysis.
The excitation energies of diabatic and adiabatic states of the

OT4 dimer along with the intermolecular distance R are shown
in Figure 2. In the diabatic picture, the LE states always appear
in a pair (same for the CT states) due to the existence of two
equivalent monomers. The excitation energies of the LE states
do not depend on R, consistent with the intuition that the LE is
only relevant to one monomer. The excitation energies of the
CT states monotonically increase with R because of the
interaction of positive and negative charge densities. The LE1−
LE2 coupling decreases with R, in accord with the R-
dependence of the adiabatic S1−S2 energy gap. The CT−LE
couplings in Figure 2 are comparable and decrease faster than
the LE−LE coupling. The CT−CT coupling is nearly zero
along with R. Overall, the diabatization procedure gives smooth

Figure 1. Structure of antiparallel OT4 dimer.
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diabatic energy curves and works perfectly near R = 4.5−5.5 Å,
where the CT states cross with the LE states.
Figure 3 gives the Huang−Rhys factor of the diabatic

electronic states obtained using the localized normal modes. In
all figures, we find that the modes with very low frequencies
generally do not give reasonable results, possibly due to
anharmonicity. Thus, we do not discuss the contribution of the

low-frequency modes. The localized modes belonging to one
monomer give the vibronic couplings only for the LE state
localized on the same monomer (Figure 3). It is also clear that
the modes with a frequency of approximately 1600 cm−1 give
large vibronic couplings. As expected, the localized modes do
not result in the vibronic couplings of the LE states relevant to
the other monomer. We also observed that the localized normal
modes contribute to the vibronic couplings of the CT states
because both of the monomers are involved in the formation of
the CT state.
In the current system, the molecular aggregates do not cause

the dramatic geometry modification from the isolated
monomer to the embedded monomer, resulting in the slight

frequency difference (relevant to ω̃ Q̃ /2ii
c

i
2

, see Figure 4) for

the mode near 900 and 3200 cm−1. The second-order
intermode potential couplings are given in Figure 5. They are
very small if two modes are localized in different monomers,
while such coupling becomes visible if two modes are in the
same units. Considering the weak couplings between two
monomers, if the LE state of the isolated OT4 monomer is

Figure 2. Excitation energies of diabatic states, diabatic couplings, and
excitation energies of adiabatic states versus the intermolecular
distance of the OT4 dimer. Here, Q̃ = 0.

Figure 3. Dependence of Huang−Rhys factor of lowest LE and CT
states on the localized pseudonormal modes for the OT4 dimer. LE
denotes that both the LE state and the localized modes are located on
the same monomer; nonLE denotes that the LE state and the localized
modes are located on different monomers. For the vibronic coupling
of the CT state, “Detach” and “Attach” denote the case that the
localized modes are relevant to the cationic and anionic part,
respectively.

Figure 4. Frequencies (relevant to ω̃ Q̃ /2ii
c

i
2

) of localized
pseudonormal modes of the OT4 dimer vs. the frequencies of the
normal modes of isolated OT4 monomer.

Figure 5. Intermode potential couplings of the localized pseudonormal
modes of the OT4 dimer system.
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taken to compute the relevant Huang−Rhys factor, we got the
very similar first-order vibronic couplings, and only the very
minor differences exist, see Figure 6.

The dependence of the diabatic couplings V(αβ) on the
localized modes was also checked. As shown in Figure 7, the

largest value of Si
(LE1,LE2) at lowest frequency 7.2 cm−1 is only

0.023, and the other factors are nearly zero. As expected, the
diabatic coupling is dominant by the zero-order term.
III.B. PBI Dimer. The PBI dimer has also received

considerable attention in theoretical studies as a representative
for various organic semiconductors.25,64,108,129−131 At the
ground state equilibrium geometry, the PBI dimer displays a
π-stacked face-to-face orientation with a plane-to-plane distance
of 3.32 Å. Since the monomers are parallel to each other, we
define R as the distance between two monomer planes. The
dependences of the diabatization on the reference distance and
the involved electronic states are given in Figures S6−S9 in the
SI. We chose 10 states at Rref = 8 Å and 14 states at Rref = 8 Å
for B3LYP132,133 and ωB97XD134 functionals, respectively, in
further projection analysis (Figure 8). Similar to the case of
OT4, the diabatization obtains good results, and all diabatic
energy curves look reasonable. Here, the dependence of the

results on the functional becomes critical. In the diabatic
picture, the excitation energies of the CT states calculated at
the ωB97XD level rise with larger R, while those obtained at
the B3LYP level remain almost constant due to the failure of
TDDFT/B3LYP at long distances.109 Although the LE
excitation energies are not dependent on R at both levels of
theories, the ωB97XD level predicts higher excitation energies
for the same diabatic LE states than the B3LYP level. However,
the diabatic couplings using B3LYP and ωB97XD display
similar curves along intermolecular distances. This seems to
indicate that the diabatic coupling is not highly dependent on
the computational levels. Ratner and co-workers105 found
similar phenomenon when they calculated diabatic couplings
with GMH theory using CIS, VOA-CIS, and ωB97X.
As expected, the LE state is only relevant to the modes

localized in the same monomer regardless of the functional
employed (Figure 9). However, the two functionals gives
different vibronic coupling values for the same state. The
Huang−Rhys factors at the ωB97XD level are larger than those
at the B3LYP level because the former functional predicts a
larger excited-state gradient than the latter functional (Figure
S10 in SI).
It should be noted that Kühn and co-workers25,108 have

constructed the diabatic Hamiltonian of the PBI dimer by the
direct diabatic-state construction approach at the B3LYP/6-
311g* level. The LE energies were obtained using the
electronic structure of the individual monomer, and their
couplings were estimated by the Coulomb coupling. Because
only the B3LYP functional was used in the monomer
calculations, the problem of B3LYP was avoided. They also
obtained the vibronic couplings by considering the normal
modes of each monomer at the same level of theory. Because
the two monomers are not strongly coupled, the frequencies
and vibronic couplings in the current work are similar to that of
the isolated monomer (Figures S11 and S12 in the SI). Overall,
our results for the vibronic couplings of the LE states at the
B3LYP level are consistent with their data.25,108

III.C. Furan and DCNE. The third model system is a
molecular complex that consists of a furan and a DCNE. The
molecules are arranged with the Cs symmetry in a face-to-face
manner.
Beside the direct projection of the adiabatic states at the

geometries under study to the reference states at the reference

Figure 6. Huang−Rhys factor of LE1 state of the isolated OT4
monomer along the normal modes (upper panel) and the diabatic
LE1 state of the OT4 dimer along the localized pseudonormal modes
(lower panel).

Figure 7. Dependence of the factor Si
(LE1,LE2) characterizing the first-

order vibronic coupling in the diabatic coupling between LE1 and LE2
states on the localized normal modes for the OT4 dimer.

Figure 8. Excitation energies of diabatic states, diabatic couplings, and
excitation energies of adiabatic states versus the intermolecular
distance of the PBI dimer using B3LYP (left) and ωB97XD (right)
functionals. Here, Q̃ = 0.
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geometry, we also carried out the calculation by using the
point-to-point procedure with ΔR = 0.1 Å. Two different paths
were taken in calculations, which always also keeps molecule
orientations unchanged. The first path follows the distance of
two mass centers of the two molecules, while the second one
follows the distance between two molecular planes. At the end,
two diabatic Hamiltonians with negligible differences were
obtained, see Table S3 in the SI. Thus, the point-to-point
projection procedure is stable because we need to follow some
particular pathways to perform the diabatization properly.
The excitation energies in the diabatic and adiabatic pictures,

as well as the diabatic couplings at the TDDFT (ωB97XD) and
ADC(2) levels, are shown in Figure 10. In the adiabatic picture,
we observe a few potential-energy surface crossings along the
intermolecular distance R. In the diabatic picture, the state

energy profiles become smooth. With larger R, the LE
excitation energy curves remain flat, and the CT excitation
energy curves rise. Although many features are similar at the
TDDFT (ωB97XD) and ADC(2) levels, the CT state becomes
higher in the ADC(2) calculations. As a contrast, the TDDFT
(ωB97XD) and ADC(2) give similar diabatic couplings, similar
to the results of the PBI dimer. Furthermore, our diabatization
results using ADC(2) are consistent with the results of previous
studies based on other diabatization approaches at the
ADC(2)/aug-cc-pVDZ level.64

Many low-lying electronic states only involve the LE
transition at the DCNE moiety, and the furan moiety is not
relevant at all. Therefore, only the localized modes of the
DCNE result in vibronic couplings (Figure 11). However, the
CT states are relevant to the transition from furan to DCNE.
Thus, the localized modes belonging to both DCNE and furan
become relevant to the vibronic couplings.

IV. CONCLUSION
In this work, we discussed the construction of the vibronic
Hamiltonian in the diabatic representation for the description
of the excited-state electron/energy transfer process in stacked
dimer systems. This protocol is fully based on the projection
methods that not only perform the adiabatic-to-diabatic
transformation of electronic states but also provide the
delocalization-to-localization transformation of the normal
modes and give the vibronic couplings. This provides a
vibronic diabatic Hamiltonian on the basis of the pseudonormal
modes localized on each monomer.
To validate the scheme, we demonstrate its application to

three examples, namely, the OT4 dimer, the PBI dimer, and the
furan/DNCE complex. The performance of the diabatization
scheme in these examples confirms that it is appropriate to
construct a reasonable diabatic Hamiltonian of stacked
molecular systems. We showed that such a diabatization
procedure becomes possible when the CIS-type electronic wave
function can be constructed, even approximately. We also
found that diabatic couplings in all systems under study weakly
depend on our chosen methods, although the diabatic energies
and intrastate vibronic coupling strengths strongly depended on
them.

Figure 9. Dependence of Huang−Rhys factors of lowest LE and CT
states on the localized pseudonormal modes for the PBI dimer. LE
denotes that both the LE state and the localized modes are located on
the same monomer; nonLE denotes that the LE state and the localized
modes are located on different monomers. For the vibronic coupling
of the CT state, “Detach” and “Attach” denote the case that the
localized modes are relevant to the cationic and anionic part,
respectively.

Figure 10. Excitation energies of diabatic states, diabatic couplings,
and excitation energies of adiabatic states versus the intermolecular
distance of the furan/DCNE complex using ωB97XD (left) and
ADC(2) (right) methods. Here, Q̃ = 0.

Figure 11. Dependence of Huang−Rhys factors, Si, of lowest two LE
and CT states on the localized pseudonormal modes for the furan/
DCNE complex.
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Based on the construction of the diabatic model for a dimer
system, it is straightforward to extend the dimer model to a
large aggregate model. Parameters of various kinds of dimers
can be obtained using the same procedure. This provides us a
possible approach to the construction of a Hamiltonian
including LE and CT states on the same footing for a large
aggregate. A similar approach was used within the framework of
the renormalized exciton method.135−138 We also note that
other approaches were proposed for the construction of local
vibrational modes.139−141 The combination of local-mode
construction and diabatization approaches may provide useful
and easy-to-use protocols for the construction of the vibronic
diabatic Hamiltonian of the large molecular aggregate systems.
These efforts will provide a more straightforward approach,
even in the black-box manner for the construction of the
vibronic diabatic Hamiltonian of complex systems with
quantum-chemistry accuracy, which can be further used in
the quantum dynamics study of realistic systems in the future.
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