A preliminary evaluation of ZSM-5/SBA-15 composite supported Co catalysts for Fischer–Tropsch synthesis

Liang Wu a,c, Zhuo Li a,⁎, Dezhi Han a, Jinhu Wu a,b, Dongke Zhang a,b

a Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
b Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6008, Australia
c University of Chinese Academy of Sciences, Beijing 100049, PR China

ARTICLE INFO

Article history:
Received 27 October 2014
Received in revised form 24 February 2015
Accepted 27 February 2015
Available online 14 March 2015

Keywords:
Catalysis
Cobalt
Fischer–Tropsch synthesis
Hydrocarbons
Selectivity
ZSM-5/SBA-15 composite

ABSTRACT

A series of ZSM-5/SBA-15 composite supported Co catalysts were prepared and evaluated for the Fischer–Tropsch synthesis (FTS) aimed to maximise the selectivity of C5–C22 hydrocarbons in the product. The composite support was prepared by physically mixing ZSM-5 and SBA-15 of varying proportions and the finished catalysts had a constant Co loading of 15wt.%. The catalysts were tested for their performance in a high pressure fixed-bed reactor operating at T = 240 °C, P = 2.0 MPa, H2/CO = 2 and GHSV = 1000 h−1. The composite supported catalysts were shown to have much improved catalytic performance over the respective single material supported catalysts. The catalyst with 20wt.% ZSM-5 in the composite support gave the maximum CO conversion (90.6%), maximum selectivity of C5+ hydrocarbons (70.0%) and minimum selectivity of light hydrocarbons (13.3% for CH4 and 7.0% for C2–C4 alkanes). The catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy with an energy dispersive X-ray spectrometer, temperature programmed desorption and temperature programmed reduction. It was revealed that the superior catalytic performance can be attributed to the large pore size and high dispersion of Co3O4, which afforded an optimum reducibility and acid site density.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Fischer–Tropsch synthesis (FTS) process is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, also known as syngas, into clean liquid fuels or valuable chemicals [1–4]. Its products are a wide-range of hydrocarbons from CH4 to heavy molecular weights and can be sulphur- and nitrogen-free with high cetane number fuels, usually following an Anderson–Schulz–Flory distribution [5,6]:

\[W_n/n = (1-\alpha)^n \alpha^2 n^{-1} \]

where \(W_n \) is the weight fraction of hydrocarbon molecules containing \(n \) carbon atoms and \(\alpha \) is the chain growth probability determined by the catalyst and the specific process conditions. It can be explained by the chain growth mechanism of hydrogenation of CO, the hydrogenolysis (cleavage with H2) of C–O bonds and the formation of C–C bonds. Iron (Fe), cobalt (Co), and ruthenium (Ru) are among the most studied metals in formulating the Fischer–Tropsch catalysts. The high cost of Ru has hindered its industrial-scale application and as such, Ru is often limited to laboratory studies [2,7]. Between Fe and Co, Co-based catalysts for FTS are usually preferred due to their high selectivity in linear paraffin fractions, slow deactivation, less oxygenates and low water–gas shift (WGS) activity [2,8–11]. Although many catalysts have been developed, selectivity control towards gasoline and middle distillate is one of the most important and difficult challenges.

One possible means to control the products is to use the support with controllable pore sizes [2]. The use of periodic mesoporous silicas, for instance, MCM-41 and SBA-15, as supports for preparing Co-based FTS catalysts has been explored [12–15]. The size-controlled pore distribution and high surface area of SBA-15 allows for restricting the formation of hydrocarbons longer than some characteristic size (say, carbon number \(n < 20 \)), as well as a better control on the cobalt particle size and higher dispersions at higher Co loading as compared to conventional amorphous silica. Martínez et al. [12] studied the influence of cobalt precursor and loading as well as promoters on the catalytic properties of Co/SBA-15 for Fischer–Tropsch synthesis. Catalysts prepared from organic cobalt precursors showed very low FTS activities than those prepared from cobalt nitrate. Xiong et al. [15] investigated the role of pore size in Co/SBA-15 as a FTS catalyst and found that the C5+ selectivity increased with increasing the SBA-15 pore size up to 9.32 nm but remained unchanged for larger pore sizes.

It was also well established that the acidic zeolite as a catalyst support or in combination with the conventional support could lead to the enhanced selectivity of gasoline [6,16,17]. Li et al. [18] studied
gasoline-range hydrocarbon synthesis with CO2-containing syngas by using SiO2/HZSM-5 hybrid-supported Co catalysts. The CO2 conversion reached the maximum of 20.3% at Co2/(CO + CO2) ratio of 0.42. Sartipi et al. [19] introduced mesopores into the structure of HZSM-5 used as support. The Co/mesoH-ZSM-5 showed higher selectivity of the gasoline-range products than Co/H-ZSM-5. However, the activity of catalysts based on mesoH-ZSM-5 decreased quickly in just 3 h. The SiO2/Al2O3 ratio and the crystal size of ZSM-5 have a strong effect on the catalytic performance and product selectivity. The strong acidity and long-path micropores usually cause the over-cracking to undesirable light hydrocarbons (CH4 and C2–C4 alkanes) [20].

The present contribution reports a preliminary experimental evaluation of ZSM-5/SBA-15 composite supported catalysts for FTS. It was expected that the combination of SBA-15 with controlled pore sizes and ZSM-5 with proper acidity would facilitate much improved selectivity of the gasoline and middle distillate range hydrocarbons.

2. Experimental

2.1. Catalyst preparation

SBA-15 was prepared as follows: 4.0 g P123 (EO20PO70EO20, MAV = 5800, Aldrich) was dissolved in 120 mL 2 M HCl with stirring to obtain a clear solution. 8.5 g TEOS (Aldrich) was gradually added into the solution with continuous stirring for 24 h. The mixture was hydrothermally processed to crystallize in a Teflon-lined autoclave at 120 °C for 24 h followed by filtering, washing and drying at room temperature. Calcination of the dried cake was then carried out in an electric oven in air at 550 °C for 6 h.

ZSM-5 (SiO2/Al2O3 = 40) was obtained from Qilu Huaxin Industry Co. Ltd. The composite supports were prepared by physically mixing the SBA-15 with the ZSM-5 in different mass ratios. The prepared Co/ZS-x catalysts were prepared by incipient wet impregnation [21, 22] of the respective ZS-x supports with a desired amount of aqueous cobalt nitrate. The precursors were dried at 120 °C and calcined at 400 °C for 4 h. The content of cobalt in the final catalysts was kept constant at 15 wt%.

2.2. Catalyst characterization

Surface area and porosity were measured using N2 adsorption–desorption at −196 °C on an ASAP-2010 Micromeritics instrument. Prior to a measurement, the sample was degassed at 300 °C for 6 h. The surface area was obtained using the BET method, the micropore volume was calculated using the t-plot method [17] and the mesopore volume was calculated using the BJH method [23].

X-ray diffraction patterns of the catalysts were collected on a Brukers D8 powder X-ray diffractometer with Cu-Kα radiation at a rate of 4° min−1 in the range 2θ = 5°–70°. The average crystal size of CoOx was calculated according to the Scherrer equation at 2θ = 36.9°, and the CoO dispersion was also estimated according to the literature [12, 17], specifically, it was estimated from "D = 96/d, where D is the % dispersion and d is the particle size of CoO in nm which equals 0.75 × d [CoOx]."

The surface concentration and oxidation states of cobalt oxides on the catalysts were determined using X-ray photoelectron spectroscopy (XPS) performed on a Physical Electronics Company Quantum-2000 Scanning ESCA Microprobe spectrometer with a Al Kα monochromatized line (1486.6 eV). All binding energies (BEs) were corrected with reference to the C 1 s (284.6 eV). The morphology of the catalyst samples was investigated using scanning electron microscopy (SEM) with a JEOL JSM-7001 F microscope operated at 10 kV. Transmission electron microscopy (TEM) imaging analysis was carried out using a JEM-2010 microscope operated at 200 kV, equipped with an energy dispersive X-ray spectrometer (EDS) attachment (Oxford INCA Penta FEI3).

The acidity of the catalysts was analysed by using temperature programmed desorption (NH3-TPD). The sample was pretreated at 300 °C for 2 h in Ar and cooled to 50 °C. After being saturated with NH3, the sample was purged with Ar to remove the physisorbed NH3. The TPD measurements of desorbed NH3 were conducted in flowing Ar from 50 °C to 650 °C at a heating rate of 10 °C min−1. All flow rates of Ar mentioned above were set to 40 mL min−1.

The reduction behaviour of the supported cobalt phases was performed in a U-tube quartz cell. It was initially purged with Ar (40 mL min−1) at 300 °C for 1 h and cooled to 50 °C, then exposed to 10% H2/Ar (40 mL min−1) while the temperature was ramped from 50 °C to 800 °C at a heating rate of 10 °C min−1.

2.3. Catalytic performance test

The FTS reaction was performed in a stainless-steel fixed-bed reactor (dint = 8 mm). A catalyst of ~1 g (250–400 μm and ~1.5 mL in volume) was well mixed with 1.5 mL of quartz particles (250–400 μm) and charged into the reactor to form a ~3 mL diluted catalyst bed to avoid the formation of hot spots in the catalyst. The catalyst was then reduced in-situ in a H2 stream at 50 mL min−1 at 450 °C for 6 h. During the FTS reaction tests, the reactant gas mixture composed of H2/CO/N2 = 6/3/1 (v/v) was introduced into the reactor with the reaction condition of 240 °C, 2 MPa and space velocity (GHSV) of 1000 h−1. The reactor effluent passed through a hot trap and a cold trap to collect the products. The gas effluent was analysed on-line for its composition by using an Agilent 7890 chromatograph equipped with a thermal conductivity detector (TCD) and a flame ionization detectors (FID). Another gas chromatograph (Agilent 7820A) equipped with a DB-1 capillary column was used to analyse the composition of the liquid products. Each experimental run was repeated at least three times and the carbon balance was also estimated as a means of confirming the validity of the experimental runs. It was found that above 90% carbon balance was achieved for all reported experiments.

3. Results and discussion

3.1. Performance of the catalysts in Fischer–Tropsch synthesis

As summarized in Table 1, the composite supported catalysts clearly displayed superior catalytic performance compared to the respective single materials supported catalysts. The composite supported catalysts showed a low selectivity of C1–C4 hydrocarbons and high selectivity of C5–C22. Although the CO conversion was not significantly altered with increasing the ratio of ZSM-5 in the composite up to 20%, the selectivity of the CH4 and C2–C4 hydrocarbons drastically decreased and the selectivity of the C5–C22 range of hydrocarbons was enhanced. Note especially that the selectivity of the middle distillate hydrocarbons C12–C22 had increased from 26.6% for Co/ZS-0 to 38.0% for Co/ZS-20. This is believed to be related to the higher cobalt dispersion and larger pore sizes in the catalysts with a higher ratio of ZSM-5 up to 20%.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>CO conversion (%)</th>
<th>Hydrocarbon selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>Co/ZS-0</td>
<td>90.0</td>
<td>23.4</td>
</tr>
<tr>
<td>Co/ZS-10</td>
<td>90.2</td>
<td>21.4</td>
</tr>
<tr>
<td>Co/ZS-20</td>
<td>90.6</td>
<td>13.3</td>
</tr>
<tr>
<td>Co/ZS-30</td>
<td>87.9</td>
<td>13.8</td>
</tr>
<tr>
<td>Co/ZS-50</td>
<td>84.9</td>
<td>18.7</td>
</tr>
<tr>
<td>Co/ZS-100</td>
<td>70.5</td>
<td>18.5</td>
</tr>
</tbody>
</table>

Reaction conditions: T = 240 °C, P = 2.0 MPa, H2/CO = 2 and GHSV = 1000 h−1.
Catalyst Co/ZS-100 with only ZSM-5 as the support, however, the CO conversion decreased to 87.9% for Co/ZS-30 and 84.9% for Co/ZS-50, accompanied by increased selectivity of CH4 and C2-C4 hydrocarbons and lowered selectivity of C5-C22 hydrocarbons. Compared to the physically mixing of Co/SiO2 and HZSM-5 reported in the literature [17], the present ZSM-5/SBA-15 composite supported Co catalysts clearly showed a higher selectivity towards C12-C22. For catalyst Co/ZS-100 with only ZSM-5 as the support, however, the CO conversion and selectivity of C5-C22 were only 70.5% and 58.0%, respectively, while the products shifted to heavier hydrocarbons C23+. The C23+ selectivity was also the highest on the Co/ZS-100 catalyst.

Compared with SBA-15 and ZSM-5, the catalysts Co/ZS-0 and Co/ZS-100 showed a decrease in the BET surface area, as shown in Table 2. While the observed slight decrease for Co/ZS-10 and Co/ZS-20 was attributed to the small fraction of ZSM-5 in the support. For Co/ZS-0, SBA-15 pores were clogged by cobalt species that made them inaccessible for nitrogen adsorption. Since the Co/ZS-5 was prepared by incipient wetness impregnation and the cobalt content was 15wt%, the chance for to enter into the micropores of ZSM-5 was usually low and CoOx was most likely to migrate and aggregate on the surface of ZSM-5 [34,35,43]. As a result, the cobalt species did not affect the nitrogen adsorption behaviour of ZSM-5. However, the average surface area and pore volume of the support decreased markedly if more ZSM-5 was added in the support. The presence of SBA-15 and its mesoporous structure favoured the formation of C5+ [14]. Note that Co/ZS-20 had the highest pore volume and pore size among all the catalysts. The good performance of Co/ZS-20 can at least be partly attributed to the pore size distribution [36].

3.3. Crystalline phase of catalysts

As shown in Fig. 1, the XRD peaks ascribed to ZSM-5 became more intense with increasing ZSM-5 in the catalyst as expected, while all catalysts showed the presence of well-defined reflection characteristics for CoOx at 31.3°, 36.8°, 44.8°, 59.4° and 65.2°, indicating the presence of crystalline cobalt species of CoOx spinel [8]. The nano crystal size thus determined offered an opportunity to examine the effect of nano crystal sizes of the composite materials in catalysis while it is understood that the absolute crystal sizes may not be highly accurate [37].

The trend of the estimated average crystal size of CoOx and the corresponding Co0 dispersion with varying amount of ZSM-5 in the catalysts took a volcanic shape with Co/ZS-20 being the smallest crystal size of 12.1 nm and greatest dispersion of 10.6%, as listed in Table 3. The CoOx crystal sizes in the composite supported catalysts were smaller than in the single SBA-15 and ZSM-5 supported catalysts (14.1 nm for Co/ZS-0 and 26.0 nm for Co/ZS-100). This dispersion trend was also in accordance with the variation trend of CO conversion and the selectivity of Cs–C22 for the catalysts. Small crystal sizes and high dispersion of

Table 2

A comparison of the present results with the literature data on the FTS reactions.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Co loading (%)</th>
<th>T (°C)</th>
<th>P (MPa)</th>
<th>SV</th>
<th>H2/CO</th>
<th>X(CO)</th>
<th>S(CH4)</th>
<th>S(C2–C4)</th>
<th>S(C5–C11)</th>
<th>S(C12–C18)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>20Co/SBA-n</td>
<td>18.0</td>
<td>220.0</td>
<td>2</td>
<td>13.5</td>
<td>1.0/h</td>
<td>2</td>
<td>23.3</td>
<td>19.5</td>
<td>15.8</td>
<td>61.4</td>
<td>/</td>
</tr>
<tr>
<td>Co/SiO2 + ZSM-5</td>
<td>19.5</td>
<td>250.0</td>
<td>2</td>
<td>13.5</td>
<td>1.0/h</td>
<td>2</td>
<td>45-60</td>
<td>11.0</td>
<td>14.7</td>
<td>74.3</td>
<td>62.4/C(C12)</td>
</tr>
<tr>
<td>Co/SBA-15</td>
<td>18.1</td>
<td>250.0</td>
<td>2</td>
<td>12.1</td>
<td>1.0/h</td>
<td>2</td>
<td>63.2</td>
<td>22.3</td>
<td>5.7</td>
<td>71.1</td>
<td>/</td>
</tr>
<tr>
<td>Co/5SBA_L</td>
<td>20.5 Ru(0.3)</td>
<td>220.0</td>
<td>2</td>
<td>/</td>
<td></td>
<td>2</td>
<td>55</td>
<td>13.5</td>
<td>14.0</td>
<td>72.5</td>
<td>/</td>
</tr>
<tr>
<td>Co/11SBA_M</td>
<td>20.8 Ru(0.2)</td>
<td>220.0</td>
<td>2</td>
<td>/</td>
<td></td>
<td>2</td>
<td>55</td>
<td>10.1</td>
<td>9.2</td>
<td>80.8</td>
<td>/</td>
</tr>
<tr>
<td>Co/SBA</td>
<td>20</td>
<td>240.0</td>
<td>2</td>
<td>1000 h-1</td>
<td>2</td>
<td>65h</td>
<td>65.5</td>
<td>83.92</td>
<td>40.56</td>
<td>27.11</td>
<td>/</td>
</tr>
<tr>
<td>Co/ZSM5</td>
<td>20</td>
<td>240.0</td>
<td>2</td>
<td>16 L/h</td>
<td>2</td>
<td>/</td>
<td>61</td>
<td>17.3</td>
<td>12.5</td>
<td>70.2</td>
<td>44.0/C(C5+)</td>
</tr>
<tr>
<td>Co/SBA-15-CH</td>
<td>20.1</td>
<td>240.0</td>
<td>2</td>
<td>13.5</td>
<td>1.0/h</td>
<td>1</td>
<td>37.0</td>
<td>5.9</td>
<td>20.6</td>
<td>71.9</td>
<td>/</td>
</tr>
<tr>
<td>Co/HZSM-5</td>
<td>20</td>
<td>251.0</td>
<td>2</td>
<td>1500 h-1</td>
<td>2</td>
<td>ca. 50</td>
<td>30.5</td>
<td>C1-C4</td>
<td>/</td>
<td>69.5</td>
<td>48.5/C(C12)</td>
</tr>
<tr>
<td>Co/ZS-0</td>
<td>15</td>
<td>240.0</td>
<td>2</td>
<td>1000 h-1</td>
<td>2</td>
<td>90.0</td>
<td>23.4</td>
<td>11.5</td>
<td>63.1</td>
<td>33.9</td>
<td>/</td>
</tr>
<tr>
<td>Co/ZS-20</td>
<td>15</td>
<td>240.0</td>
<td>2</td>
<td>1000 h-1</td>
<td>2</td>
<td>90.0</td>
<td>13.3</td>
<td>7.0</td>
<td>79.7</td>
<td>32.0</td>
<td>/</td>
</tr>
<tr>
<td>Co/ZS-100</td>
<td>15</td>
<td>240.0</td>
<td>2</td>
<td>1000 h-1</td>
<td>2</td>
<td>90.0</td>
<td>18.5</td>
<td>12.0</td>
<td>69.5</td>
<td>23.9</td>
<td>/</td>
</tr>
</tbody>
</table>

Table 3

Textural properties of the samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>BET surface area (m²/g)</th>
<th>Pore volume (cm³/g)</th>
<th>Micropore volume (cm³/g)</th>
<th>Mesopore volume (cm³/g)</th>
<th>Average pore size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBA-15</td>
<td>486</td>
<td>0.28</td>
<td>0.04</td>
<td>0.21</td>
<td>2.4</td>
</tr>
<tr>
<td>ZSM-5</td>
<td>398</td>
<td>0.16</td>
<td>0.16</td>
<td>0</td>
<td>1.6</td>
</tr>
<tr>
<td>Co/ZS-0</td>
<td>382</td>
<td>0.28</td>
<td>0.03</td>
<td>0.15</td>
<td>3.0</td>
</tr>
<tr>
<td>Co/ZS-10</td>
<td>396</td>
<td>0.29</td>
<td>0.11</td>
<td>0.16</td>
<td>2.8</td>
</tr>
<tr>
<td>Co/ZS-20</td>
<td>387</td>
<td>0.30</td>
<td>0.10</td>
<td>0.17</td>
<td>3.0</td>
</tr>
<tr>
<td>Co/ZS-30</td>
<td>316</td>
<td>0.23</td>
<td>0.09</td>
<td>0.12</td>
<td>2.9</td>
</tr>
<tr>
<td>Co/ZS-50</td>
<td>309</td>
<td>0.24</td>
<td>0.10</td>
<td>0.12</td>
<td>3.0</td>
</tr>
<tr>
<td>Co/ZS-100</td>
<td>273</td>
<td>0.15</td>
<td>0.08</td>
<td>0.05</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Co3O4 in the catalysts play a key role in enhancing the FTS activity [38]. The crystal size of Co3O4 in the Co/ZS-100 catalyst (26.0 nm) dramatically exceeded the micropore size of ZSM-5 (0.53 × 0.56 nm, IUPAC), indicating that few Co3O4 particles entered the micropores of ZSM-5 and a large fraction of Co3O4 located on the external surface of ZSM-5 [35], consistent with the observations in the FTS reactions discussed in the previous section.

3.4. XPS characterization of catalysts

The XPS narrow scan spectra for the Co 2p peaks could illustrate the chemical state and surface distribution of the cobalt species. As shown in Fig. 2, the Co 2p1/2 and Co 2p3/2 peaks featured at the binding energy (BE) of 780.2–780.8 eV and 795.4–796.1 eV indicate the presence of Co2+ or Co3+ in the Co2O3 spinel phase [35]. Furthermore, for all samples the doublet separation of the binding energy (ΔE) between the Co 2p1/2 and Co 2p3/2 peaks was 14.8–15.4 eV, which is close to that of the mixed-valence Co3O4 (15.2 eV) [39]. Therefore, Co3O4 was considered the predominant cobalt phase in these catalysts after calcination, in agreement with the XRD results. The shallow features (789.3 eV) on the higher energy side of the main peaks could be ascribed to shake-up satellites associated with some Co2+ in the high spin state [40], particularly evident for the catalyst Co/ZS-100.

The peak intensity of Co 2p3/2 became enhanced with increasing ZSM-5 in Co/ZS-x catalysts, indicating the increased content of Co3O4 on the Co/ZS-x catalyst surface. Note that the escape depth of photoelectrons generated during the XPS analysis is less than 10 nm. Compared with Co/ZS-0, the surface atomic ratio of Co/Si increased with increasing ZSM-5 addition but the Co/Si ratio of Co/ZS-100 was 0.401, an order of magnitude higher than those of the other catalysts. It is believed that the cobalt particles were enriched on the exterior surface of the ZSM-5 particles but were distributed on both external and internal surfaces of SBA-15. The disproportionate Co/Si ratio relative to the amount of ZSM-5 could have resulted from the different ratio of Co3O4 on the external and internal surfaces of the composite support.

3.5. Morphology of catalysts

As can be seen from Fig. 3a and b, Co/ZS-0 (ie. without any ZSM-5 zeolite) consisted of SBA-15 particles of relatively uniform sizes of around 1 μm. The white dots in Fig. 3b were deemed to be the Co3O4 particles. The dispersion of the cobalt particles was well distributed. The average crystal size of ZSM-5 in the Co/ZS-100 catalyst was 2–3 μm (Fig. 3d) where the non-uniform small particles observed on the external surface of ZSM-5 were believed to be Co3O4. The Co3O4 particles observed on ZSM-5 were uneven since some cobalt species agglomerated to large particles. From Fig. 3c, both the SBA-15 structures and the ZSM-5 crystals in the composite can be distinctly observed. The worm-like macrostructures of SBA-15 always aggregated together, and the crystallites of ZSM-5 were distinguished as well.

It can be directly observed from Fig. 4 that SBA-15 had a highly ordered hexagonal arrangement of the channels and the darker contrasts were representative of Co3O4 located both on the external surface and within the channels (Fig. 4a). A similar distribution was also observed on Co/ZS-20 (Fig. 4b), a cross-sectional view of the SBA-15 channels. The pore size in the SBA-15 structure estimated from Fig. 4b was 6.0 nm and the size of cobalt particles inside the SBA-15 channels in Fig. 4a was 5.9 nm. The darkness observed on ZSM-5 (Fig. 4c) was regarded as Co3O4 on the external surface of ZSM-5, since the Co signal as well as Si and Al signals were observed from the EDS result (Fig. 4d). It can be speculated that most cobalt particles were likely to form on the external surface of ZSM-5, which was in accord with the SEM image and literature reports that the Co species were prone to migrate and aggregate on the surface of ZSM-5 after the incipient wetness impregnation process with higher cobalt content [35,43].

3.6. Acidic properties of catalysts

The surface acidity of an FTS catalyst has a strong impact on the in-situ cracking of products formed [7] and was therefore determined for the present catalysts using NH3-TPD with results shown in Fig. 5. All the catalysts, including SBA-15, showed a characteristic peak I at about 104 °C, owning to desorption of the physisorbed NH3 from the Si–OH sites on the surface of SBA-15 or ZSM-5 [41]. The broad peak II at around 486 °C for the single SBA-15 supported catalyst Co/ZS-0 is
Fig. 3. Typical SEM images of three representative catalyst samples (a) Co/ZS-0; (b) Co/ZS-0 with a larger magnification; and (c) Co/ZS-20; and (d) Co/ZS-100.

Fig. 4. Typical TEM images of (a) Co/ZS-0; (b) Co/ZS-20; (c) Co/ZS-100; and (d) EDS analysis of point O on Co/ZS-100.
due to the negligible adsorption of NH3 on the pure SBA-15 [35], while the peak II at 370 °C for Co/ZS-100 can be assigned to the aluminium centres of ZSM-5 and the dispersion of Co3O4 on the support of ZSM-5 [35]. Compared to Co/ZS-0 and Co/ZS-100, peak II for the composite supported catalysts may have originated from the dispersion of Co3O4 on the support of SBA-15 and ZSM-5 and the aluminium centres of ZSM-5. It was observed that peak II shifted to lower temperatures with increasing ZSM-5 addition up to 20wt.%, which was in accordance with the literature [35] that the acid strength of the alumina centres of ZSM-5 was less than the dispersion of Co3O4 on the support. Peak II shifted to higher temperatures for Co/ZS-30 and Co/ZS-50 than the Co/ZS-20 catalyst, indicating the surface coverage of alumination centres by the larger crystal sizes of Co3O4. Meanwhile, the intensity of the peak above 350 °C was enhanced with increasing the amount of ZSM-5, suggesting the increased acid sites arising from the aluminium centres of ZSM-5 [42]. Table 5 gives the acid site density, expressed as NH3 adsorbed in mmol per gram of catalyst on Co/ZS catalysts. Generally, the acid site density increased with an increase in the ZSM-5 content in the composite supports. The acid sites could cause the cracking and isomerization of heavier hydrocarbons generated on the surface cobalt sites. However, the acid sites with high strength could also result in the over-cracking to undesired light hydrocarbons (CH4 and C2 alkanes). Co/ZS-20 was found to be the best for the production of middle hydrocarbons, which seems to be consistent with the amount of acid sites on this catalyst.

3.7. Reduction behaviour of catalysts

The activity of FTS catalysts strongly depends on the reducibility of the Co3O4 species and the H2-TPR was performed on the present catalysts to assess their reduction behaviour of Co3O4. The TPR profiles shown in Fig. 6 allowed the degree of reduction to be estimated by dividing the H2 consumption below 450 °C by the total H2 consumption by the catalysts as summarized in Table 5. Fig. 6 shows two distinct reduction peaks, peak I at around 320 °C and peak II at about 450 °C, on the H2-TPR profiles for the catalysts containing less than 50% ZSM-5. The reduction of Co3O4 was a two-step process involving the reduction of Co3+ to Co2+ at a low temperature and the subsequent reduction of CoO to metallic Co at a high temperature [43]. Therefore, peak I may be attributed to the reduction of Co3+ to Co2+ and peak II to the reduction of CoO to metallic Co in the present work. The temperature of peak I incurred little alternation (at around 324 °C) while the addition of ZSM-5 in the composite support was increased up to 30wt.%, but was shifted to lower temperatures (at 316 °C and 312 °C) with further addition of ZSM-5 at 50wt.% and 100wt.%. However, the temperature of peak II of the broad profiles comprised of more than one peak was decreased from 460 °C to 445 °C, which is thought to be caused by the coaction of different-sized particles and varying degrees of interaction between the cobalt species and the support [36]. The easy reduction had resulted from the large crystal sizes and the weak interaction between the cobalt species and support. The effect of crystal size of Co3O4 was typical for the reduction of CoO to metallic Co (peak II), therefore, the Co/ZS-100 catalyst with the much larger crystal sizes displayed an much easier reduction behaviour at 362 °C, which was in good agreement with the literature reports [12,44]. The degree of reduction for Co/ZS-100 was 76.5%, the highest among the catalysts. The greater extent of reduction facilitated the production of long-chain hydrocarbon products [14]. In addition to the two main reduction peaks, a third peak at around 650 °C (peak III) was also observed for Co/ZS-50 and Co/ZS-100, being more apparent on the latter. This might be caused by the reduction of more stable species, such as cobalt aluminate or cobalt silicate on the ZSM-5 support [45]. The high CH4 selectivity of FTS over Co/ZS-0 and the large amount of C2+ production over Co/ZS-100 were consistent with the literature report [24] that the CH4 selectivity was enhanced on the CoO surface and the high reducibility of Co3O4 was beneficial to the production of long-chain hydrocarbons.

4. Conclusions

The ZSM-5/SBA-15 composite supported catalysts were shown to have the superior catalytic performance as compared to the single material supported catalysts. The selectivity profiles of the C1–C4 and C5–C22 ranges of hydrocarbons took a volcanic shape for the catalysts with increasing amount of ZSM-5 in the support. The catalyst with 20wt.% ZSM-5 in the support shifted the product distribution to the

Table 5: Physicochemical properties of the catalysts.

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>H2 consumption below 450 °C (mmol/g)</th>
<th>Overall H2 consumption (mmol/g)</th>
<th>Degree of reduction [%]</th>
<th>NH3 uptake (mmol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co/ZS-0</td>
<td>1.47</td>
<td>2.84</td>
<td>51.8</td>
<td>2.58</td>
</tr>
<tr>
<td>Co/ZS-10</td>
<td>1.50</td>
<td>2.84</td>
<td>52.8</td>
<td>2.41</td>
</tr>
<tr>
<td>Co/ZS-20</td>
<td>1.34</td>
<td>2.77</td>
<td>48.3</td>
<td>2.63</td>
</tr>
<tr>
<td>Co/ZS-30</td>
<td>1.34</td>
<td>2.77</td>
<td>48.4</td>
<td>2.69</td>
</tr>
<tr>
<td>Co/ZS-50</td>
<td>1.36</td>
<td>2.58</td>
<td>52.7</td>
<td>2.50</td>
</tr>
<tr>
<td>Co/ZS-100</td>
<td>1.83</td>
<td>2.39</td>
<td>76.5</td>
<td>2.90</td>
</tr>
</tbody>
</table>

* The degree of reduction is calculated by dividing the H2 consumption below 450 °C by the total amount of H2 consumption by the catalysts.
middle distillate range of hydrocarbons, with minimum selectivity of C1-C4 and maximum selectivity of C5-C22. More light hydrocarbons (CH4 and C2-C4 alkanes) were produced with further addition of ZSM-5. The composite support with 20wt.% ZSM-5 showed the optimal amount and strength of acid sites for the cracking of heavier hydrocarbons to C5-C22.

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of the People’s Republic of China (Project No. 2010BAC68B03), Chinese Academy of Sciences (Project No. XDA07070301 and Project No. Y2010022), Entrepreneurial and Innovative Leading Talent Project of Qingdao (13-CK-19) and the Australian Research Council under the ARC Linkage Projects scheme (ARC LP100200136).

References