Crystal structures and theoretical calculations of two peculiar compounds derived from 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one

Xingchen Yan ${ }^{\text {a,b, }}$, Xiaojing $\mathrm{Wu}^{\mathrm{a}, 1}$, Jiakun $\mathrm{Xu}^{\mathrm{a}, \mathrm{c}}$, Yuhua Fan ${ }^{\mathrm{a}, *}$, Caifeng Bi ${ }^{\mathrm{a}, *}$, Xia Zhang ${ }^{\mathrm{a}}$, Zhongyu Zhang ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, PR China
${ }^{\mathrm{b}}$ Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
${ }^{\text {c }}$ Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China

H I G H L I G H T S

- Novel pyrazoline derivative potassium coordination polymer and organic salt.
- Various effects of coordination and intermolecular weak interactions was compared.
- Pyrazoline anions in the two compounds have the different conformations.
- The coplanarity of the two O atoms depends on their coordination environment.
- The sites for coordination and hydrogen bonding was predicted by calculations.

A R T I C L E I N F O

Article history:

Received 16 February 2014
Received in revised form 16 June 2014
Accepted 17 June 2014
Available online 22 June 2014

Keywords:

HPMBP derivative
Potassium coordination polymer
Crystal structure
Water cluster
Quantum chemistry calculation

G R A P H I C A L A B S T R A C T

Abstract

A potassium coordination polymer $\left[\mathrm{K}_{2}(\mathrm{PMBP})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n} \cdot 2 n \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$ was prepared by reaction of 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (HPMBP) with potassium hydroxide. The single crystal of the supermolecule $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NH}_{3}^{+}$. $\mathrm{PMBP}^{-}(\mathbf{2})$ was then obtained by utilizing cyclohexylamine as the proton acceptor. It is a diketonate salt with an organic base where the PMBP ${ }^{-}$anions are stabilized by the intermolecular weak interactions (including hydrogen bonding, $\pi-\pi$ stacking interactions and Van der Waals forces), rather than by coordination to a metal centre. Geometrical parameters of the isolated PMBP ${ }^{-}$ anion were optimized through quantum chemistry calculation to simulate the state without any disturbances or interactions. Comparison of geometric parameters of compound $\mathbf{1}$ with the optimized structure of PMBP ${ }^{-}$provides an approach to study weak intermolecular interactions in the crystal state. The coordination sites and the proton acceptors of hydrogen bonds predicted by theoretical calculations are consistent to the experimental results.

© 2014 Elsevier B.V. All rights reserved.

[^0]http://dx.doi.org/10.1016/j.molstruc.2014.06.057
0022-2860/® 2014 Elsevier B.V. All rights reserved.

Introduction

4-Acyl-5-pyrazolones derivatives have attracted intensive attentions during the past decades for their applications as analgesics, antipyretics, anti-inflammatory agents and insecticides [1]. Among
these, 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one (HPMBP) and its derivatives are widely utilized in the fields of trace metal separation [2-5], sterilization and deinsectization [6]. HPMBP has three potential coordination (donor) sites and may exist in four tautomers (Scheme 1) [7]. Crystal structures of tautomers \mathbf{a} and \mathbf{b} have been determined [8,9], but it is quite difficult to characterize the structure of its complexes due to the dramatic change of geometric parameters of the pyrazolone ring in the coordination process, which results from the deprotonation of HPMBP and rearrangement of the electron cloud of PMBP $^{-}$.

Although the transition metal complexes of HPMBP have been extensively studied [6,7,10-12], crystal structures of its alkali metal complexes have never been reported. Herein, we report a peculiar HPMBP potassium coordination polymer, $\left[\mathrm{K}_{2}(\mathrm{PMBP})_{2}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n} \cdot 2 n \mathrm{H}_{2} \mathrm{O}$ (1). In the crystal structure, adjacent onedimensional structures are connected into a three-dimensional network via five-membered water chains. Water chains are attracting a great deal of attentions because of their vital role in the biological transport of water, protons, and ions [13-15]. It was recently found that transport of water or protons across the cell involves the assembly of highly mobile hydrogen-bonded water molecules into a single chain at the positively charged constricted pore of the membrane-channel protein aquaporin-1 [16].

Supermolecular chemistry refers to the assembly of at least two molecules through spontaneous secondary interactions such as hydrogen bonding, dipole-dipole, charge transfer, Van der Waals, and $\pi-\pi$ stacking interactions [17-21]. This so-called "bottom up" approach to construct nanostructures is advantageous over the "top down" approach such as microlithography which requires substantial effort to fabricate microstructures and devices as the target structures are extended to the range below 100 nm [22]. In addition, essential biological processes, such as signal transduction, biocatalysis, information storage, and processing, are all based on the supermolecular interactions between molecular components [23]. Thus, the single crystal of the supermolecule $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NH}_{3}^{+-}$. PMBP^{-}(2) was obtained by employing cyclohexylamine as the proton acceptor. It is a diketonate salt with an organic base where the PMBP $^{-}$anions are stabilized by the intermolecular weak interactions (including hydrogen bonding, $\pi-\pi$ stacking interactions and Van der Waals forces), rather than by coordination to a metal centre. Geometric parameters of the isolated PMBP ${ }^{-}$anion were then optimized through quantum chemistry calculation to simulate the state without any disturbances or interactions. As a result, we are able to study the various effects of coordination and supermolecular interactions on the structure of PMBP^{-}anion comparing geometries of compounds $\mathbf{1}$ and $\mathbf{2}$ with the optimized one. The quantum chemistry calculations can explain why the PMBP ${ }^{-}$anion coordinates to potassium, an element that is scarcely engaged in coordination.

Experimental

Materials and physical measurements

All reagents of analytical grade were used as obtained by commercial sources without further purification. Infrared spectra of the compounds were recorded in KBr pellets using a Nicolet 170SX spectrophotometer in the $4000-400 \mathrm{~cm}^{-1}$ region. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Bruker DRX-600 spectrometer. Elemental analyses were carried out with a model 2400 Perkin-Elmer analyzer. Xray diffraction data were collected on a Bruker Smart CCD X-ray single-crystal diffractometer.

Synthesis of $\left[\mathrm{K}_{2}(\mathrm{PMBP})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n} \cdot 2 \mathrm{nH} \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$

A mixture containing l-Tyrosine $(0.181 \mathrm{~g}, 1 \mathrm{mmol})$, KOH ($0.056 \mathrm{~g}, 1 \mathrm{mmol}$) and methanol (30 mL) was stirred for 1 h at $60^{\circ} \mathrm{C}$. The obtained solution was filtered and HPMBP (0.278 g , 1 mmol) was added to the filtrate, which was further stirred for 4 h at $60^{\circ} \mathrm{C}$. The resulting solution was filtered and the filtrate was left at room temperature for slow evaporation in air. Colorless block crystals of compound $\mathbf{1}$ formed after approximately 30 days. $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 3111,3354,1624,1593,1578,1497,1456,1431$, 1397, 1352, 1062, 942, 838, 764, 698, 668, 657, 609. ${ }^{1}$ HNMR (CD_{3-} $\mathrm{OD}, 600 \mathrm{MHz}) \delta 7.74\left(\mathrm{~d}, J 7.8,2 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{5}\right), 7.66\left(\mathrm{~d}, J 6.6,2 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{5}\right)$, $7.39\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CC}_{6} \mathrm{H}_{5}\right), 7.13\left(\mathrm{t}, \mathrm{J} 7.2,1 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{5}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$. Anal. Calc. for $\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~K}_{2} \mathrm{~N}_{4} \mathrm{O}_{9}$: C 56.49, H $5.02, \mathrm{~N} 7.75$. found: C 56.63, H 4.93, N 7.66\%.

Synthesis of $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NH}_{3}^{+}$. PMBP $^{-}$(2)

A mixture containing HPMBP ($0.278 \mathrm{~g}, 1 \mathrm{mmol}$), cyclohexylamine ($0.099 \mathrm{~g}, 1 \mathrm{mmol}$) and methanol (30 mL) was stirred for 4 h at $60^{\circ} \mathrm{C}$. The resulting solution was filtered and the filtrate was left at room temperature for slow evaporation in air. Colorless block crystals of compound 2 formed after approximately 30 days. $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}: 2934,2856,1625,1593,1553,1521,1499,1452$, 1429, 1395, 1348, 944, 835, 769, 699, 610. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right)$ $\delta 7.73$ (d, J 7.8, 2H, NC ${ }_{6} H_{5}$), 7.66 (d, J 6.6, 2H, $\mathrm{NC}_{6} \mathrm{H}_{5}$), 7.39 (m, 5 H , $\mathrm{CC}_{6} \mathrm{H}_{5}$), $7.14\left(\mathrm{t}, J 7.2,1 \mathrm{H}, \mathrm{NC}_{6} H_{5}\right), 2.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHNH}_{3}{ }^{+}\right), 2.29(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $1.96\left(\mathrm{~d}, J 10.8,2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.80\left(\mathrm{~d}, J 13.2,2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67(\mathrm{~d}, \mathrm{~J}$ 13.2, $1 \mathrm{H}, \mathrm{CH}_{2}$), $1.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{1} \mathrm{HNMR}$ (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}\right) \delta 8.03\left(\mathrm{~d}, J 7.8,2 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{5}\right), 7.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}_{3}^{+}\right)$, $7.59\left(\mathrm{~d}, J 6.6,2 \mathrm{H}, \mathrm{NC}_{6} H_{5}\right), 7.31\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CC}_{6} \mathrm{H}_{5}\right), 7.23(\mathrm{t}, J 7.8,2 \mathrm{H}$, $\mathrm{CC}_{6} \mathrm{H}_{5}$), $6.91\left(\mathrm{t}, \mathrm{J} 7.2,1 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{5}\right), 2.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHNH}_{3}^{+}\right), 2.19(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) 1.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56\left(\mathrm{~d}, \mathrm{~J} 12.6,1 \mathrm{H}, \mathrm{CH}_{2}\right)$, $1.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.08\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 56.49, H 5.02, N 7.75 ; found: C 56.33 , H 5.14 , N 7.67%.

Scheme 1.

Crystallographic data collection and structure determination

Diffraction intensity data of single crystals of compounds 1 and 2 were collected on a Bruker Smart CCD X-ray single-crystal diffractometer equipped with a graphite monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) by using a φ and ω scan mode at 298(2) K. The diffraction data were integrated by using the SAINT program [24]. Empirical absorption correction was applied using the SADABS programs [25]. The structures refinements were against F^{2} by the full-matrix least-squares technique using the SHELXTL crystallographic software package [26]. All non-hydrogen atoms were found in the final difference Fourier map. Hydrogen atoms were fixed geometrically at calculated distances and allowed to ride on the parent non-hydrogen atoms. Positional and thermal parameters were refined by full-matrix least-squares method to convergence. The crystallographic data of compounds $\mathbf{1}$ and $\mathbf{2}$ are summarized in Table 1.

Computational details

Atom coordinates used in the calculations were from crystallographic data. A PMBP ${ }^{-}$anion in compound 2 was selected as the initial model for the isolated PMBP $^{-}$, and was optimized to find the stationary point. The calculations were carried out by Density Functional Theory (DFT) B3LYP method with 6-31+G* basis set. The harmonic vibrational frequencies were calculated at the same level of theory for the optimized PMBP $^{-}$. The vibrational frequency calculations revealed no imaginary frequencies, indicating that the stationary point at this level of approximation was found for

Table 1
The crystallographic data and structure refinement for compounds 1 and 2.

Compound	Compound 1	Compound 2
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{~K}_{2} \mathrm{~N}_{4} \mathrm{O}_{9}$	$\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$
Formula weight	722.87	377.48
Temperature (K)	298(2)	298(2)
Wavelength (A)	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	$P 2_{1} / \mathrm{n}$	$P 2{ }_{1} / \mathrm{c}$
$a(\AA)$	11.6364(9)	12.3456 (11)
$b(\AA)$	16.1665(12)	14.4090 (13)
$c(\AA)$	19.4938(17)	23.339 (2)
$\alpha\left({ }^{\circ}\right)$	90	90
$\beta\left({ }^{\circ}\right)$	104.5630(10)	93.8800 (10)
$\gamma\left({ }^{\circ}\right)$	90	90
Volume (\AA^{3})	3549.4(5)	4142.2 (7)
Z	4	8
Calculated density (g/cm ${ }^{3}$)	1.353	1.211
Absorption coefficient (mm^{-1})	0.325	0.078
$F(000)$	1512	1616
Crystal size (mm)	$0.49 \times 0.40 \times 0.36$	$0.18 \times 0.16 \times 0.13$
θ range for data collection (${ }^{\circ}$)	2.33 to 25.02	2.72 to 25.02
Limiting indices	$\begin{aligned} & -13 \leqslant h \leqslant 10 \\ & -19 \leqslant k \leqslant 19 \\ & -23 \leqslant l \leqslant 21 \end{aligned}$	$\begin{aligned} & -14 \leqslant h \leqslant 14 \\ & -17 \leqslant k \leqslant 17 \\ & -16 \leqslant l \leqslant 27 \end{aligned}$
Reflections collected/unique	$\begin{aligned} & 17140 / 6257 \\ & {\left[R_{\mathrm{int}}=0.0772\right]} \end{aligned}$	$\begin{aligned} & 20,720 / 7297 \\ & {\left[R_{\mathrm{int}}=0.0990\right]} \end{aligned}$
Completeness to $\theta=25.02$	0.998	0.998
Max. and min. transmission	0.8920 and 0.8570	0.9899 and 0.9861
Data/restraints/parameters	6257/0/444	7297/0/509
Goodness of fit on F^{2}	1.062	1.049
$R_{1}{ }^{\text {a }}, w R_{2}{ }^{\text {b }}[I>2 \sigma(I)]$	$\begin{aligned} & R_{1}=0.0599 \\ & w R_{2}=0.1342 \end{aligned}$	$\begin{aligned} & R_{1}=0.0595 \\ & w R_{2}=0.0869 \end{aligned}$
$R_{1}{ }^{\text {a }}, w R_{2}{ }^{\text {b }}$ (all data)	$\begin{aligned} & R_{1}=0.1317, \\ & w R_{2}=0.1810 \end{aligned}$	$\begin{aligned} & R_{1}=0.1919 \\ & w R_{2}=0.1009 \end{aligned}$
Largest diff. peak and hole (e. \AA^{3})	0.394 and -0.403	0.468 and -0.340
$\begin{aligned} & \text { a } R=\Sigma\left(\| \| F_{0}\left\|-\left\|F_{\mathrm{C}}\right\|\right\|\right) / \Sigma F_{0} . \\ & { }^{\mathrm{b}} w R=\left[\Sigma w\left(\left\|F_{0}\right\|^{2}-\left\|F_{\mathrm{C}}\right\|^{2}\right)^{2} / \Sigma w\left(F_{0}^{2}\right)\right]^{1 / 2} . \end{aligned}$		

PMBP $^{-}$. The molecular electrostatic potential, $V(\boldsymbol{r})$, at a given point $\boldsymbol{r}(x, y, z)$ in the vicinity of a molecule, is defined in terms of the interaction energy between the electrical charge generated by the molecule's electrons and nuclei and a positive test charge (a proton) located at \mathbf{r}. All calculations were conducted on a Pentium IV computer using Gaussian 03 program [27]. The graphics of the optimized geometry, MEP maps and frontier molecular orbitals were generated using GaussView 5.0.9 [28].

Results and discussions

Crystal structure description of $\left[\mathrm{K}_{2}(\mathrm{PMBP})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n} \cdot 2 \mathrm{nH}_{2} \mathrm{O}(\mathbf{1})$

Selected bond lengths and angles for compound $\mathbf{1}$ are listed in Table S1 in supplementary materials. Comparison of hydrogen bonding geometrical parameters for compounds $\mathbf{1}$ and $\mathbf{2}$ are listed in Table 2. As shown in Fig. 1a, compound $\mathbf{1}$ is a neutral coordination polymer, consisting of potassium cations and PMBP ${ }^{-}$anions connected by coordination bonds. The ligand containing 01A and O2A is designated as ligand $\mathbf{1 A}$ while the ligand containing 01B and 02 B is designated as ligand 1B. There are coordinated (O , $\mathrm{O} 2, \mathrm{O} 3)$ and solvent $(\mathrm{O} 4, \mathrm{O} 5)$ water molecules in the crystal lattice. K1 coordinates with six atoms. Among them, two are O1B and O2B in ligand $\mathbf{1 B}$, one is 01 A in ligand $\mathbf{1 A}$, one is 01 from the coordinated water, and the other two are the atoms generated from O1B and O2B through symmetry operation (i) shown in Fig. 1a. K2 coordinates with five atoms. Among them, two are 01A and O2A in ligand 1A, two are 02 and 03 from the coordinated water, and the other one is the atom generated from O2A through symmetry operation (ii) shown in Fig. 1a. There are two six-membered chelating rings around K 1 , namely ring $\mathrm{K} 1-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-$ $\mathrm{C} 5 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}-\mathrm{K} 1$ and the ring generated from it through symmetry operation (i). Around K2, there is one six-membered chelating ring $\mathrm{K} 2-01 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{K} 2$.

As shown in Fig. 1b, O1B and O2B in ligand 1B coordinate with K1 and the atom it generated through symmetry operation (i) at the same time. An octahedral cage is formed by six atoms, which are O1B, O2B, K1 and the atoms generated by them through symmetry operation (i). O2A in ligand 1A coordinates with K2 and the atom generated from K2 through symmetry operation (ii) at the same time. A parallelogram ring is formed by four atoms, which are O2A, K2 and the atoms generated by them through symmetry operation (ii). In this way, a chain structure along the a axis is formed through coordination bonds.

As shown in Fig. 1c, adjacent chains lying parallel to each other are connected by water molecules via hydrogen bonds into threedimensional network. Herein, a water chain: O2‥H1A-O1H1B \cdots O4-H4B \cdots O5-H5B \cdots O3 is formed by these water molecules via hydrogen bonds (Fig. 1d). 03 is linked to 01A and 01B in one chain to give two intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and 09 is linked to O 2 B to give an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. In contrast, O 2 and 04 are linked to N 2 A and N 2 B in another chain to give two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, respectively.

Crystal structure description of $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NH}_{3}^{+} \cdot \mathrm{PMBP}^{-}$(2)

Selected bond lengths and angles for compound 2 are listed in Table S2 in supplementary material. As shown in Fig. 2a, compound 2 is a supermolecule consisting of PMBP $^{-}$anions and cyclohexylammonium cations. The asymmetric unit contains two independent cations and two independent anions. The anion containing 01A and 02A is designated as anion 2A while the anion containing O1B and O2B is designated as anion 2B. There exist $\pi-\pi$ stacking interactions between the adjacent phenyl rings in

Table 2
Comparison of hydrogen bonding geometrical parameters for compounds $\mathbf{1}$ and $2\left(A ̊,{ }^{\circ}\right)$.

	$d(\mathrm{D}-\mathrm{H})$	$d(\mathrm{H} \cdots \mathrm{A})$	$d(\mathrm{D} \cdots \mathrm{A})$	$<(D-H \cdots A)$
1				
O1-H1A . . O2	0.85	2.17	2.903(6)	145.0
O1-H1B . . 4 $^{\text {a }}$	0.85	2.05	2.747(6)	138.9
O2-H2A \cdots N $2{ }^{\text {b }}$	0.85	2.27	2.834(5)	124.2
O2-H2B \cdots O1	0.85	2.22	2.903(6)	136.9
O3-H3A \cdots. ${ }^{\text {a }}{ }^{\text {c }}$	0.85	1.94	2.785(4)	176.7
O3-H3B . . 01 B $^{\text {d }}$	0.85	1.90	2.747(4)	176.8
O4-H4A . . N2B	0.85	2.04	2.887(5)	179.3
O4-H4B . . $0^{\text {e }}$	0.85	1.96	2.812(7)	179.7
O5-H5A \cdots O2B $^{\text {f }}$	0.85	2.15	2.958(5)	160.1
O6-H5B $\cdot{ }^{\text {O }}{ }^{\text {g }}$	0.85	2.07	2.880(5)	160.0
2				
N1C-H1CA...O1A	0.8900	2.1200	2.888(4)	144.00
N1C-H1CA...O2A	0.8900	2.4900	3.127(4)	129.00
N1C-H1CB \cdots N2A ${ }^{\text {h }}$	0.8900	2.1300	3.012(4)	169.00
N1C-H1CC...O1B ${ }^{\text {i }}$	0.8900	2.2300	3.112(4)	170.00
N1C-H1CC...O2B ${ }^{\text {i }}$	0.8900	2.4600	2.909(4)	111.00
N1D-H1DA \cdot N2B ${ }^{\text {j }}$	0.8900	2.1300	3.005(4)	168.00
N1D-H1DB . . O1B ${ }^{\text {i }}$	0.8900	1.9600	2.840(4)	169.00
N1D-H1DC...O1A	0.8900	2.0700	2.949(4)	168.00
N1D-H1DC...O2A	0.8900	2.5300	3.006(4)	114.00

a Symmetry code: $-x+3 / 2, y-1 / 2,-z+3 / 2$.
${ }^{\text {b }}$ Symmetry code: $-x+1 / 2, y-1 / 2,-z+3 / 2$.
c Symmetry code: $-x,-y+1,-z+1$.
${ }^{\text {d }}$ Symmetry code: $x-1, y, z$.
e Symmetry code: $-x+3 / 2, y+1 / 2,-z+3 / 2$.
${ }^{\mathrm{f}}$ Symmetry code: $-x+1,-y+1,-z+1$.
${ }^{\mathrm{g}}$ Symmetry code: $x+1, y, z$.
${ }^{\text {h }}$ Symmetry code: $-x+1, y+1 / 2,-z+1 / 2$.
${ }^{i}$ Symmetry code: x, y, z.
${ }^{j}$ Symmetry code: $-x+1, y-1 / 2,-z+1 / 2$.
ligands 1A and 1B. The distance between the centre of the two phenyl rings is 3.921 (3) Å. Their dihedral angle is 4.3(2) Å, indicating that they are nearly parallel to each other. The slippage between them is $3.4374(18) \AA$, indicating that it is offset face-to-face $\pi-\pi$ stacking interaction. PMBP $^{-}$anions are connected by cyclohexylammonium cations via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and two bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a chain structure along the a axis (Fig. 2b). Adjacent chains are further connected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding and bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding into a two-dimensional network (Fig. 2c). As viewed along the a axis, the crystal is further stabilized by the Van der Waals forces to assemble a three-dimensional supermolecular structure (Fig. 2d). In most cases when such diketonate salt with ammonium cations were found in the solid state (CSD reference codes FAGPOS, VECKEU, VECKIY, XUZWIY and PINCUK), they participated in similar hydrogen bonding as in compound 2 [29-32]. They are comprised of acetylacetonate derivative anions and secondary ammonium cations. In these structures, one $\mathrm{N}-\mathrm{H}$ bond in the secondary ammonium cation forms bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding to two O atom acceptors in the diketonate anion, while the other $\mathrm{N}-\mathrm{H}$ bond forms $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding to one of the O atom acceptor in another diketonate anion. In this way tetramers similar to existing in crystal structure of compound 2 (shown in the ellipse in Fig. 2c) are formed but in contrast they are connected only by van der Waals forces.

Characterization of the protonated cyclohexylamine

Limited by the quality of the single crystals, the hydrogen atoms were fixed geometrically at calculated distances and allowed to ride on the parent non-hydrogen atoms. However, the protonation of cyclohexylamine can be characterized by IR and ${ }^{1} \mathrm{H}$ NMR data. For IR data, the absorption maximum of compound 2 at $2934 \mathrm{~cm}^{-1}$ and $2356 \mathrm{~cm}^{-1}$ can be assigned to the antisymmetric
stretch $\mathrm{Vash}_{3}{ }^{+}$, and the symmetric stretch $v_{s} \mathrm{NH}_{3}{ }^{+}$, whereas the antisymmetric and symmetric stretch bands of NH_{2} should exist between $3500 \mathrm{~cm}^{-1}$ and $3300 \mathrm{~cm}^{-1}$. This can prove the protonation of cyclohexylamine in the solid state. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded in $\mathrm{CD}_{3} \mathrm{OD}$ to characterize and compare the skeleton structures of the two compounds in solution. The signals in the range of 7.74-7.13 ppm are assigned to the resonance of the hydrogen atoms in the two phenyl rings. The chemical shifts around 2.27 ppm are assigned to the resonance of the hydrogen atoms in methyl. The corresponding chemical shifts and coupling constant are very similar in the two compounds. For compound 2, there exists additional signals of 2.97 ppm and $1.96-1.19 \mathrm{ppm}$, which are assigned to the resonance of the hydrogen atoms in the cyclohexyl skeleton. The ${ }^{1} \mathrm{H}$ NMR spectrum recorded in $\mathrm{CD}_{3} \mathrm{OD}$ can prove the coexistence of the HPMBP and cyclohexylamine in solution. To characterize the position of the reactive hydrogen atoms in solution, the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$ was recorded in DMSO- d_{6}. Apart from the assignments above, an additional signal appears at 7.72 ppm , which is assigned to the resonance of the hydrogen atoms in the protonated amino group, NH_{3}^{+}. In addition, no additional signals were found in the spectrum, indicating the deprotonation of HPMBP.

Comparison of the geometric parameters

The optimized geometry of PMBP $^{-}$is shown in Fig. 3 to simulate the state without any disturbances or interactions. To study the various effects of coordination and intermolecular weak interactions on the structure of the PMBP ${ }^{-}$anion, structural comparison is made between ligands $\mathbf{1 A}, \mathbf{1 B}$, cations $2 \mathrm{~A}, 2 \mathrm{~B}$ and the optimized PMBP $^{-}$, which is listed in Table 3. All the values in the same row are their corresponding values. The geometric parameters used in the following comparisons and discussions are taken from the experimental data for compounds $\mathbf{1}$ and $\mathbf{2}$, and from the calculated values for PMBP $^{-}$after optimization.

For the optimized PMBP^{-}, 01, N1, N2, C1, C2, C3, C12, C13, C14, $\mathrm{C} 15, \mathrm{C} 16$ and C17 are nearly coplanar, indicating that the phenyl ring and the pyrazolone ring can form a large conjugated system. The large $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{O} 2$ torsion angle of 20.0° and $\mathrm{O} \cdots \mathrm{O}$ separation of $3.086 \AA$ are attributed to the electronic repulsion between O 1 and O 2 . The large torsion angle of C2-C5-C6-C7 (49.6 ${ }^{\circ}$) is attributed to the repulsion force between H 7 and C4, because if the phenyl ring and the pyrazolone ring were coplanar, they would be overlapped.

For compound 1, 01A, N1A, N2A, C1A, C2A, C3A and C5A are coplanar in ligand 1A. O1A coordinates with K1 and K2 simultaneously while O2A coordinates with two K2. This elongates $\mathrm{C} 1 \mathrm{~A}-01 \mathrm{~A}$ and increases the C1A-C2A-C5A-02A torsion angle $\left(25.2(6)^{\circ}\right)$. As a result, $01 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$ is approximately $0.032 \AA$ longer than O2A-C5A in ligand 1A, whereas the two O-C bond lengths are similar in the optimized PMBP^{-}. But the $\mathrm{O} \cdots \mathrm{O}$ separation has decreased ($3.035(6) \AA \AA$), because the coordinated potassium anions can decrease the repulsion force. In contrast, ligand 1B has a more symmetric structure, because O1B and O2B coordinate to two K1 simultaneously to form two six-membered rings. As a result, the two $\mathrm{O}-\mathrm{C}$ bonds still maintain the similar distance, and both O2A and O2B is coplanar with the pyrazolone ring. In addition, the $0 \cdots 0$ separation (2.915(6) \AA) is smaller than that in ligand 1 A . The corresponding phenyl rings in ligand 1A, ligand 1B and the optimized PMBP $^{-}$have the different conformations, which is caused by the steric hindrance in compound 1.

For compound 2, $01 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$ is approximately $0.026 \AA$ longer than $\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$ in anion 2 A , and $\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$ is approximately $0.018 \AA$ longer than $02 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$ in anion 2B. The $\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}$ and $\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{O} 2 \mathrm{~B}$ torsion angles of $14.9(6)^{\circ}$ and $-21.1(6)^{\circ}$ are similar to that in PMBP $^{-}$, but they rotate

Fig. 1. (a) The atomic labeling scheme for an asymmetric unit of compound $\mathbf{1}$ (all hydrogen atoms are omitted for clarity), symmetry codes: (i) $-x+3,-y+1,-z+1$; (ii) $-x+2,-y+1,-z+1$; (b) the chain structure along the a axis in compound $\mathbf{1}$; (c) the packing diagram of the unit cell of compound $\mathbf{1}$ viewed along the a axis; (d) view of the five-membered water chain in compound 1.

Fig. 2. (a) The atomic labeling scheme for an asymmetric unit of compound $\mathbf{2}$ (all hydrogen atoms are omitted for clarity, except for those in NH_{3}^{+}); (b) the chain structure along the a axis in compound $\mathbf{2}$; (c) the two-dimensional network viewed along the c axis in compound $\mathbf{2}$; (d) the packing diagram of the unit cell of compound $\mathbf{2}$ viewed along the a axis.

Fig. 3. The optimized molecular structure of PMBP $^{-}$.
in different directions. This may be ascribed to the hydrogen bonding and electrostatic interactions between cyclohexylammonium cations and PMBP $^{-}$anions. The phenyl rings consisting of $\mathrm{C} 12 \mathrm{~A} \sim \mathrm{C} 17 \mathrm{~A}$ and $\mathrm{C} 12 \mathrm{~B} \sim \mathrm{C} 17 \mathrm{~B}$ are designated as ring 1 ring 2, respectively. Both $\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$ and $\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}$ are not coplanar with the pyrazolone rings, and ring 1 and ring 2 are parallel to each other. The large torsion angles of C1A-N1A-C12A-C13A $\left(-56.3(6)^{\circ}\right)$ and $\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}\left(52.9(6)^{\circ}\right)$, and the distortion of $\mathrm{N}-\mathrm{C}$ bonds in anions $\mathbf{2 A}$ and 2B are attributed to the $\pi-\pi$ stacking interaction between ring 1 and ring 2 (Fig. 2a). They must rotate along the $\mathrm{N}-\mathrm{C}$ bonds to make the two phenyl rings parallel to decrease the distance between them. The corresponding phenyl rings in ligand 2A, ligand 2B and the optimized PMBP^{-}have the different conformations, which should be also caused by the steric hindrance in compound 2.

Quantum chemistry calculations

MEP is related to the electronic density and is a very useful descriptor in understanding sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions [33].

Fig. 4. The total electron density mapped with electrostatic potential surface of the optimized PMBP ${ }^{-}$.

The electrostatic potential $V(\boldsymbol{r})$ are also well suited for analyzing processes based on the 'recognition' of one molecule by another, as in drug-receptor, and enzyme-substrate interactions, because it is through their potentials that the two species first 'see' each other [34]. To predict reactive sites for coordination and hydrogen bonding for PMBP ${ }^{-}$, MEP surface based on the optimized geometry was mapped on total electron density (Fig. 4).

As shown in Fig. 4, the MEP of the optimized PMBP ${ }^{-}$in the whole structure is negative, because the large delocalization extent caused the transfer to the whole structure of the negative charge brought by deprotonation. The most negative regions are found between O 1 and O 2 with the value of -0.201 a.u. (Fig. 3c). Due to the negative MEP in the whole structure and the more negative region between 01 and $\mathrm{O} 2, \mathrm{PMBP}^{-}$anion can chelate potassium or form bifurcated hydrogen bonds in the alkaline condition to stabilize the structure and neutralize the negative electronic potential. There is another negative region of the anion around N 2 atom (-0.139 a.u.) which may attract hydrogen bond. This is consistent to the experimental results that $\mathrm{O} 1, \mathrm{O} 2$ and N 2 are proton

Table 3
Comparison of the important bond lengths and torsion angles between the experimental data for compounds $\mathbf{1}$ and $\mathbf{2}$, and the calculated values for the optimized PMBP ${ }^{-}\left(\AA,{ }^{\circ}\right)$.

Bond	1A	Bond	1B		
01A-C1A	1.271(5)	01B-C1B	1.257(5)		
02A-C5A	1.239(5)	O2B-C5B	1.248(5)		
N1A-C1A	$1.374(5)$	N1B-C1B	1.394(5)		
N1A-N2A	1.395(4)	N1B-N2B	1.395(5)		
N2A-C3A	1.330(5)	N2B-C3B	1.307(5)		
C1A-C2A	1.426(6)	C1B-C2B	1.432(6)		
C2A-C3A	1.408(5)	C2B-C3B	1.435(6)		
C2A-C5A	1.447(6)	C2B-C5B	1.418(6)		
Torsion angle	1A	Torsion angle	1B		
C1A-N1A-C12A-C13A	-35.3(6)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}$	-27.1(6)		
C1A-C2A-C5A-O2A	25.2(6)	C1B-C2B-C5B-O2B	-0.3(7)		
C3A-C2A-C5A-C6A	33.7(6)	C3B-C2B-C5B-C6B	-1.0(7)		
C2A-C5A-C6A-C7A	46.2(6)	C2B-C5B-C6B-C7B	-78.1(6)		
Bond	2A	Bond	2B	Bond	PMBP $^{-}$
01A-C1A	1.268(4)	01B-C1B	1.259(4)	O1-C1	1.238
02A-C5A	1.242(4)	O2B-C5B	1.241(4)	O2-C5	1.243
N1A-C1A	1.378(4)	N1B-C1B	1.387(4)	N1-C1	1.430
N1A-N2A	1.399(4)	N1B-N2B	1.399(4)	N1-N2	1.391
N2A-C3A	1.310(4)	N2B-C3B	1.311(4)	N2-C3	1.319
C1A-C2A	1.435(5)	C1B-C2B	1.423(5)	C1-C2	1.453
C2A-C3A	1.426(5)	C2B-C3B	1.428(5)	C2-C3	1.435
C2A-C5A	1.426(5)	C2B-C5B	1.434(5)	C2-C5	1.440
Torsion angle	2A	Torsion angle	2B	Torsion angle	PMBP $^{-}$
C1A-N1A-C12A-C13A	-56.3(6)	C1B-N1B-C12B-C13B	52.9(6)	C1-N1-C12-C13	0
C1A-C2A-C5A-O2A	14.9(6)	C1B-C2B-C5B-O2B	-21.1(6)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{O} 2$	20.0
C3A-C2A-C5A-C6A	11.1(7)	C3B-C2B-C5B-C6B	-21.4(7)	C3-C2-C5-C6	26.5
C2A-C5A-C6A-C7A	63.5(6)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	-53.3(6)	C2-C5-C6-C7	49.6

Fig. 5. View of the frontier molecular orbitals of the optimized PMBP $^{-}$.
acceptors of hydrogen bonds, through which the supermolecular structure is assembled.

The energies and components of molecular orbitals are important characteristics in theoretical studies, which can predict the chemical properties. View of the frontier molecular orbitals of the optimized PMBP^{-}are shown in Fig. 5. Analysis of the frontier molecular orbital components shows that they distribute nearly evenly on PMBP^{-}. The phenyl rings consisting of $\mathrm{C} 12 \sim \mathrm{C} 17$ and C6 ~ C11 atoms are designated as ring 3 and ring 4, respectively. The HOMO-1 and HOMO orbitals are distributed mainly on the pyrazolone ring and ring 3 , while the LUMO and LUMO +1 orbitals are distributed mainly on ring 4 . As the π orbitals of the pyrazolone ring and ring 3 contribute most to the HOMO-1 and HOMO orbitals, the π electrons are delocalized over a large conjugated system built of pyrazolone ring and ring 3. The HOMO orbital is mainly consisted of the p orbitals of O 1 and O 2 , and the π orbital of the pyrazolone ring. Thus, $\mathrm{O} 1, \mathrm{O} 2$ and N 3 should be more prone to donate electrons into both coordination and hydrogen bonds. However, the large steric hindrance of N3 will hinder the formation of coordination having little impact on hydrogen bonding due to longer interatomic distances. This is also consistent to the experimental result that O 1 and O 2 chelate with potassium to form compound 1 , and $01, \mathrm{O} 2$ and N 2 serve as the proton acceptor of the hydrogen bonds to assemble compound 2.

Conclusions

A coordination polymer $\left[\mathrm{K}_{2}(\mathrm{PMBP})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n} \cdot 2 n \mathrm{H}_{2} \mathrm{O}$ and a supermolecule $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NH}_{3}^{+}$. PMBP^{-}were synthesized and characterized by IR, ${ }^{1} \mathrm{H}$ NMR, elemental analysis, and X-ray crystallography. For compound 1, each oxygen atoms in the β-diketone coordinates two potassium cations, forming a chain structure. Adjacent chain structures are connected by five-membered water chains involving coordinated and solvent water molecules into three-dimensional network. Compound 2 is a diketonate salt with an organic base where the PMBP $^{-}$anions are stabilized by hydrogen bonding, $\pi-\pi$ stacking interactions and Van der Waals forces, rather than by coordination to a metal centre. Comparison of the PMBP ${ }^{-}$anions between compounds 1, compound $\mathbf{2}$ and the optimized one indicates that both coordination and intermolecular weak interactions enables rotation of phenyl rings along the connecting bonds to different degrees. The rotation of the phenyl ring connected with the N atoms disturbs the π electron conjugation with the pyrazolone
ring. Coplanarity of the two O atoms in PMBP^{-}depends on their coordination environment. The calculated MEP maps and frontier molecular orbitals of PMBP^{-}indicate that O1, O 2 and N3 atoms are expected to take part in coordination and hydrogen bonding. But due to the steric hindrance, only oxygen atoms are involved in coordination, which is consistent to the experimental results.

Acknowledgements

This research was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120132110015), the National Natural Science Foundation of China (Grant Nos. 21371161, 21071134 and 20971115), the Special Foundation for Young Teachers of Ocean University of China (Grant No. 201113025) and the Natural Science Foundation of Shandong Province (Grant No. ZR2012BQ026).

Appendix A. Supplementary material

Selected bond lengths and angles for compounds $\mathbf{1}$ and $\mathbf{2}$ are available in the supplementary materials. Additional materials available from the Cambridge Crystallographic Data Centre, CCDC Nos. 923255 (1) and 956910 (2), contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033). Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.molstruc.2014.06.057.

References

[1] J.L. Wang, Y. Yang, X. Zhang, F.M. Miao, Acta Cryst. E59 (2003) 0430-0432.
[2] S. Umetani, K. Sasayama, M. Matsui, Anal. Chim. Acta 134 (1982) 327-331.
[3] Y. Akama, A. Tong, S. Ishima, M. Kajitani, Anal. Sci. 8 (1992) 41-44.
[4] Y. Akama, T. Nakai, F. Kawamura, Analyst 106 (1981) 250-253.
[5] Y. Akama, T. Nakai, F. Kawamura, Bunseki Kagaku 25 (1976) 496-500.
[6] B.A. Omotow, M.A. Mesubi, Appl. Organomet. Chem. 11 (1997) 1-10.
[7] E.C. Okafor, Spectrochim. Acta 37A (1981) 945-950.
[8] Y. Akama, M. Shiro, T. Ueda, M. Kajitanim, Acta Cryst. C51 (1995) 1310-1314.
[9] Y. Akama, A. Tong, Microchem. J. 53 (1996) 34-41.
[10] F. Bonati, Polyhedron 4 (1985) 357-364.
[11] J.C. Lü, K.L. Yong, J.S. Chen, C.S. Liang, Q.D. Su, Appl. Organomet. Chem. 11 (1997) 1-10.
[12] B.V. Patel, B.T. Thaker, Synth. React. Inorg. Met.-Org. Chem. 16 (1986) 13191335.
[13] D. Konozo, M. Yasui, L.S. King, P. Agre, J. Clin. Invest. 109 (2002) 1395-1399.
[14] B. Roux, R. MacKinnon, Science 285 (1999) 100-102.
[15] U. Buck, F. Huisken, Chem. Rev. 100 (2000) 3863-3890.
[16] D.J. Zhou, Q. Lia, C.H. Huang, G.Q. Yao, S. Umetani, M. Matsui, L.M. Ying, A.C. Yu, X.S. Zhao, Polyhedron 16 (1997) 1381-1389.
[17] J. Rebek Jr., Angew. Chem. Int. Ed. 29 (1990) 245-255.
[18] D.B. Amabilino, J.F. Stoddart, Chem. Rev. 95 (1995) 2715-2828.
[19] M.C.T. Fyfe, J.F. Stoddart, Acc. Chem. Res. 30 (1997) 393-401.
[20] A. Harada, J. Li, M. Kamachi, Nature 356 (1992) 325-327.
[21] A. Harada, K. Li, M. Kamachi, Nature 370 (1994) 126-128.
[22] G.M. Whitesides, J.P. Mathias, C.T. Seto, Science 254 (1991) 1312-1319.
[23] M. Albrecht, Naturwissenschaften 94 (2007) 951-966.
[24] SMART and SAINT, Area Detector Control and Integration Software, Siemens Analytical X-ray Systems, Inc., Madison, WI, 1996.
[25] Bruker AXS, SAINT Software Reference Manual, Madison, WI, 1998.
[26] G.M. Sheldrick, Acta Cryst. A64 (2008) 112-122.
[27] K.D. Frisch, G.W. Trucks, H.B. Schlegel, M.A. Robb, J.R. Cheeseman, V.G Zakrzewski, J.A. Montgomery, Gaussian03, Revision A. 6, Gaussian Inc, Pittsburgh, PA, 2003.
[28] R. Dennington II, T. Keith, J. Millam, GaussView, Version 5.0.9, Semichem Inc, Shawnee Mission, KS, 2008.
[29] J. Emsley, N.J. Freeman, R.J. Parker, H.M. Dawes, M.B. Hursthouse, J. Chem. Soc., Perkin Trans. 1 (1986) 471-473.
[30] O.D. Gupta, B. Twamley, J.M. Shreeve, J. Fluorine Chem. 127 (2006) 263-269.
[31] D. Neculai, A.M. Neculai, H.W. Roesky, J. Magull, G. Bunkòczi, J. Fluorine Chem. 118 (2002) 131-134.
[32] L. Huang, S.B. Turnipseed, R.C. Haltiwanger, R.M. Barkley, R.E. Sievers, Inorg. Chem. 33 (1994) 798-803.
[33] N. Okulik, A.H. Jubert, Internet Electron. J. Mol. Des. 4 (2005) 17-30.
[34] P. Politzer, P.R. Laurence, K. Jayasuriya, J. McKinney, Environ. Health Perspect. 61 (1985) 191-202.

[^0]: * Corresponding authors. Tel.: +86 053266781932.

 E-mail addresses: fanyuhua301@163.com (Y. Fan), bicaifeng301@163.com (C. Bi).
 ${ }^{1}$ These authors contributed equally to the work.

