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Abstract

Understanding the diversity, composition, structure, function, and dynamics of human microbiomes in individual human
hosts is crucial to reveal human-microbial interactions, especially for patients with microbially mediated disorders, but
challenging due to the high diversity of the human microbiome. Here we have developed a functional gene-based
microarray for profiling human microbiomes (HuMiChip) with 36,802 probes targeting 50,007 protein coding sequences for
139 key functional gene families. Computational evaluation suggested all probes included are highly specific to their target
sequences. HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene
profiles between oral and gut microbiome. Obvious shifts of microbial functional structure and composition were observed
for both patients with dental caries and periodontitis from moderate to advanced stages, suggesting a progressive change
of microbial communities in response to the diseases. Consistent gene family profiles were observed by both HuMiChip and
next generation sequencing technologies. Additionally, HuMiChip was able to detect gene families at as low as 0.001%
relative abundance. The results indicate that the developed HuMiChip is a useful and effective tool for functional profiling of
human microbiomes.
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Introduction

Extensive studies have shown that the human microbiome plays

extremely important roles in human health, nutrition, disease, and

antibiotic resistance [1,2,3,4,5]. Many human disorders, such as

dental caries, periodontitis, type 2 diabetes, and obesity, are closely

related with changed microbial communities in the human body

[3,6,7,8,9,10,11,12]. Thus understanding the diversity, composi-

tion, structure, function, and dynamics of human microbiomes in

individual human hosts is crucial to reveal human-microbial

interactions, especially for patients with microbially mediated

disorders, but challenging due to the high diversity of the human

microbiome. For example, the number of microbial cells is at least

ten times more than human cells in the individual human body

[13,14], and the number of microbial genes is 100 times more than

their host. Although thousands of microbial species from the

human body have been isolated and sequenced, especially by the

Human Microbiome Project (HMP) [15], characterizing and

linking the function of microbial communities to their host’s health

status (e.g., obesity, liver diseases, periodontitis) is still challenging.

Microbial ecological microarrays are a technology that can be

used for highly parallel detection of complex microbial commu-

nities in many environments [16,17]. So far, a variety of

microarrays, such as GeoChip, PhyloChip, HITChip, HuGChip,

as well as a series of other 16S rRNA based microarrays have been

developed and widely used for functional and phylogenetic

profiling of microbial communities from different habitats

[18,19,20,21,22,23]. However, these microbial ecological micro-

arrays mainly target functional genes that play important roles in

biogeochemical processes in the natural environment or 16S

rRNA genes, but not functional genes specifically important to the

human body. Intriguingly, recent metagenomic studies suggested

that a functional rather than a taxonomic core might be present

within a given niche of the human microbiome, and that changes
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in these cores might lead to different physiological states

[5,11,24,25].

In this study, we aimed to develop a functional gene based

microarray to target key microbial functional processes related

with human health, disease and nutrition. The developed

HuMiChip was applied to characterize the human microbiome

with human gut and oral samples. Also, we compared the

functional gene profiles of human gut and oral samples obtained

by the HuMiChip and by next generation sequencing technolo-

gies, and consistent results were observed. This study demonstrates

that the developed HuMiChip is a useful and effective tool for

functional profiling of human microbiomes.

Materials and Methods

Sequence retrieval, probe designing and microarray
synthesis

The HuMiChip was developed using a pipeline (Figure S1)

modified from the GeoChip 3.0 and 4.0 design [26]. Reference

protein sequences for each selected gene family were retrieved

from the KEGG database and subject to multiple sequence

alignment, and an HMM model was built using the HMMER

program [27]. A total of 322 bacterial genome sequences and 31

shotgun metagenomes [24] were downloaded: 300 from NCBI

database, 16 from HOMD [28], 6 from Oralgen database [29],

and 31 human gut metagenomes from MG-RAST server

[24,30,31], which formed a Mother database (MotherDB). Protein

sequences were extracted and searched against the pre-built

HMM models from reference sequences collected from the KEGG

database [32]. Corresponding nucleotide sequences were extracted

and subject to probe design by CommOligo 2.0 [33] using probe

design criteria described previously [26]. Candidate probes were

searched against the whole MotherDB for specificity. The best

probes were selected for microarray fabrication by Roche

NimbleGen (Madison, WI).

Sampling, DNA extraction, purification and quantification
Oral subgingival/supragingival and fecal samples were collected

from subjects at the West China Hospital of Stomatology, Sichuan

University (oral samples) and the First Affiliated Hospital of

Zhejiang University (fecal samples), respectively. A total of 86

individuals were recruited for sample collection, among which 62

were oral samples representing five groups of oral microbiota, and

24 were fecal samples representing gut microbiota. Subgingival

plaque was collected for periodontitis patients, subgingival and

supragingival plaque from teeth #11-18 and #31-38 was collected

for healthy individuals, and supragingival plaque from teeth #11-

18 and #31-38 was collected for patients with dental caries. All

patients were provided written informed consent and research was

approved by the local (the West China Hospital of Stomatology of

Sichuan University and the First Affiliated Hospital of Zhejiang

University) ethics committee and Institutional Review Broad

(IRB), respectively.

The following criteria were applied to identify healthy

individuals and patients with moderate/severe dental caries and

moderate/advanced periodontitis. General criteria for patients

with periodontitis/dental caries were [34]: (i) aged between 20 and

70 years; (ii) medically healthy; (iii) no previous periodontal/dental

caries treatment and no antibiotic use within the past 6 months;

and (iv) willing to consent to the clinical examination and

microbial sampling. Moderate periodontitis was identified with

4 mm , probe depth (PD) # 6 mm,attachment loss (AL)

3,5 mm, 1/3 root length , alveolar bone destruction (ABD) ,

K root length. And advanced periodontitis was identified with PD

$ 6 mm, AL . 5 mm, and ABD . 1/2 root length [35]. For

patients with dental caries, the decayed, missing and filled tooth

(DMFT) index was used to define different levels of conditions.

Moderate caries was identified for patients with 0 , DMFT , 5,

and severe dental caries was defined with DMFT $ 5. All healthy

individuals must have (i) no pockets and clinical attachment loss

(CAL); (ii) no alveolar bone absorption on X-ray examination; and

(iii) less than 15% of sites with bleeding on probing (BOP) or

redness.

For oral microbiome sampling, bacteria were separated from

the paper-points by vortexing. The paper points were discarded

and community DNA was extracted using the QIAamp TM DNA

micro Kit (QIAGEN Sciences, Maryland, USA) following the

manufacturer’s instructions and adding a lysozyme (3 mg/mL, 1.5

h) treatment step.

For gut microbiome sampling, all fecal samples were immedi-

ately frozen on collection and stored at 270uC before analysis. A

frozen aliquot (200 mg) of each fecal sample was added to a 2.0-ml

screwcap vial containing 300 mg glass beads of 0.1 mm diameter

(Sigma, St. Louis, MO, USA), and kept on ice until the addition of

1.4-ml ASL buffer from the QIAamp DNA Stool Mini Kit

(Qiagen, Valencia, CA, USA). Samples were immediately

subjected to beadbeating (45 s, speed 6.5) using a FastPrep

machine (Bio 101, Morgan Irvine, CA, USA), prior to the initial

incubation for heat and chemical lysis at 95uC for 5 minutes.

Subsequent steps of DNA extraction followed the QIAamp kit

protocol for pathogen detection.

DNA quality was evaluated by the absorbance ratios at A260/

A280 and A260/A230 using spectrophotometry (NanoDrop 1000,

Thermo Scientific) and final DNA concentrations were quantified

with the Pico-Green kit (Invitrogen, Carlsbad, CA, USA). Only

DNA samples with A260/A280 . 1.7 and A260/A230 . 1.8 were

used. The extracted whole community DNA for each sample was

then shipped to the University of Oklahoma (OU) for HuMiChip

analysis. Since only DNA samples were used at OU, the OU IRB

ruled this as non-human research so that IRB approval was not

needed from OU.

Target labeling and hybridization
The purified DNA was labeled with Cy-3 using random primers

and the Klenow fragment of DNA polymerase I [36]. Labeled

DNA was purified using the QIA quick purification kit (Qiagen,

Valencia, CA) according to the manufacturer’s instructions,

measured on a NanoDrop ND-1000 spectrophotometer (Nano-

Drop Technologies Inc., Wilmington, DE), and then dried down

in a SpeedVac (ThermoSavant, Milford, MA) at 45uC for 45 min.

Dried DNA was rehydrated with 2.68 mL sample tracking control

(NimbleGen, Madison, WI, USA) to confirm sample identity. The

samples were incubated at 50uC for 5 min, vortexed for 30 sec,

and then centrifuged to collect all liquid at the bottom of the tube.

Hybridization buffer (7.32 mL), containing 40% formamide, 25%

SSC, 1% SDS, 2.38% Cy3-labeled alignment oligo (NimbleGen)

and 2.8% Cy5-labeled CORS target, was added. The samples

were then mixed by vortexing, spun down, incubated at 95uC for 5

min, and maintained at 42uC until hybridization. An HX12 mixer

(NimbleGen) was placed onto the array using NimbleGen’s

precision mixer alignment tool, and then the array was preheated

to 42uC on a hybridization station (MAUI, BioMicro Systems, Salt

Lake City, UT, USA) for at least 5 min. Samples (6.8 mL) were

then loaded onto the array surface and hybridized approximately

16 h with mixing.

HuMiChip for Profiling Human Microbiomes
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Imaging, and data preprocessing
After hybridization, arrays were scanned at full laser power and

100% PMT gain with a NimbleGen MS 200 Microarray Scanner

(Roche NimbleGen). Scanned images were gridded by Nimble-

Scan software using the gridding file containing HuMiChip probes

and NimbleGen control probes to obtain the signal intensity for

each probe. Probe spots with coefficient of variance (CV) greater

than 0.8 were removed. Probes with SNR (signal-to-noise ratio)

less than 2 and signal intensities less than 1000 were also removed.

Microarray data was then normalized based on the total signal

intensity of CORS probes. Both raw and normalized data is

available under NCBI GEO accession number GSE54290.

Statistical analysis
Three different non-parametric multivariate analysis methods,

adonis (permutational multivariate analysis of variance using

distance matrices), anosim (analysis of similarities) and MRPP

(multi-response permutation procedure), as well as detrended

correspondence analysis (DCA), were used to measure the overall

differences of the community functional gene structure between

treatment and control samples [37]. The significance of relative

abundance differences between control and treatment samples for

functional gene categories was evaluated by the response ratio

analysis.

Comparative analysis of functional gene profiles by
HuMiChip and NGS technologies

Gene family abundance datasets by NGS technologies were

downloaded from http://www.hmpdacc.org/HMMRC/, and

profiles targeting human stool and subgingival plaque samples

were extracted and analyzed. The human gut and healthy human

oral microbial gene family profiles by HuMiChip were extracted

and compared with that by NGS technologies. Pearson correlation

coefficient was calculated to estimate the correlation between the

HuMiChip signal intensity and NGS relative abundance.

Results

Functional gene families included in HuMiChip
To monitor the functional diversity, composition, structure, and

dynamics of human microbiomes, we selected 139 functional gene

families that play important roles in multiple pathways. A detailed

list and description of selected functional genes can be found in the

supplementary information (Table S1).
(i) Amino acid metabolism and biosynthesis. Amino

acids play central roles in building protein blocks and intermedi-

ates in metabolism. In the human body, 8 of 20 basic amino acids

are essential but cannot be self-produced, and for the other 12

amino acids, 8 are conditionally essential [38]. Essential and

conditionally essential amino acids must be taken from external

sources, such as food and/or microbial synthesis [39]. The human

gut microbiome is enriched with genes involved in the synthesis of

essential amino acids [40]. Here we selected 59 gene families

involved in amino acid and/or precursor synthesis, transport and

metabolism in human microbiota. These gene families were

selected for their important roles in degradation, biosynthesis, and

conversion of essential amino acids, which are of great importance

for human nutrition. Among these, 16 gene families were selected

for their important roles in arginine and proline metabolism, 9 in

alanine, aspartate and glutamate metabolism, 8 in phenylalanine,

tyrosine and tryptophan biosynthesis, 11 in glycine, serine and

threonine metabolism, 17 in valine, leucine and isoleucine

biosynthesis and degradation, and 12 in cysteine and methionine

metabolism.

(ii) Metabolism and biosynthesis of other amino

acids. In addition to standard amino acid metabolism, 23 gene

families were selected to target the metabolism of non-standard

amino acids, which are not directly produced by cellular

machinery, but formed by post-translational modification. The

non-standard amino acids are generally essential for the function

or regulation of proteins, such as better binding of Ca2+ [41].

Among the selected gene families, six were involved in

selenocompound metabolism, four in D-glutamine and D-gluta-

mate metabolism, three in cyanoamino acid metabolism, five in

beta- and D-alanine metabolism, three in glutathione metabolism,

and three in taurine and hypotaurine metabolism. A detailed list of

gene families as well as involved non-standard amino acids can be

found in Table S2.

(iii) Carbohydrate metabolism. Carbohydrates are critical

nutrients for both human hosts and microbiota, and are also

mediators that control the complex relationship between microbes

and their human host [42,43]. Only a limited portion of

carbohydrates can be digested by human hosts, while the rest

may be degraded by the gut microbiota [42]. Metagenome

sequencing analysis has shown that the human gut microbiome

contains a large number of genes related to carbohydrate

degradation [24,25]. We selected 35 gene families targeting

central carbon metabolism (pentose phosphate pathway, TCA

cycle, pyruvate, propanoate, and butanoate) and complex

carbohydrate metabolism (starch, sucrose and pectin). Among

these, six were selected for their important roles in pentose

phosphate pathway, eight in pentose and glucuronate intercon-

versions, four in pyruvate metabolism, four in propanoate

metabolism, four in butanoate metabolism, six in starch and

sucrose metabolism, four in fructose and mannose metabolism,

and four in galactose metabolism,

(iv) Energy metabolism. Microorganisms are able to gain

energy from multiple metabolic pathways, such as carbon fixation,

methane metabolism, nitrogen metabolism and sulfur metabolism

[44]. Fourteen gene families involved in energy metabolism were

selected. Among these, three were selected for their important

roles in methane metabolism, five in nitrogen metabolism, four in

sulfur metabolism, and four in carbon fixation pathways.

(v) Glycan biosynthesis and metabolism. The human

microbiota residing in the intestine play important roles in

degrading glycans and polysaccharides, including dietary plants,

animal-derived cartilage and tissue, and host mucus [45]. The

polysaccharides synthesized by bacteria can also induce immune

responses that are beneficial to bacteria, host, or both [46]. To

monitor microbial related glycan metabolism processes, 14 gene

families involved in lipopolysaccharide biosynthesis, peptidoglycan

biosynthesis, and glycosaminoglycan degradation were selected.

Among these, five were selected for their important roles in

peptidoglycan biosynthesis, five in glycosaminoglycan degradation,

two in lipopolysaccharide biosynthesis, and two in other glycan

degradation.

(vi) Lipid metabolism and biosynthesis. Lipids are not

only essential components of the human body, but also contribute

to many pathological processes, such as obesity, diabetes, heart

disease, and inflammation [47]. The biosynthesis and degradation

of lipids could be carried out by both human cells and microbial

communities. Previous studies have shown that microbial metab-

olism of lipids in the gut promotes atherosclerosis [48,49]. Six key

gene families involved in fatty acid metabolism (acetyl-CoA

acyltransferase and beta-ketoacyl-acyl-carrier-protein synthase),

glycerolipid metabolism (glycerol kinase), sphingolipid metabolism

(beta-D-galactosidase), ketone bodies synthesis and degradation

HuMiChip for Profiling Human Microbiomes
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(butyryl CoA acetate CoA transferase), and bile acid biosynthesis

(conjugated bile salt hydrolase) were selected.

(vii) Metabolism and biosynthesis of cofactors and

vitamins. Cofactors are organic or inorganic non-protein

chemical compound that are bound to and responsible for a

protein’s activity. Organic cofactors are typically vitamins or are

made from vitamins. A metagenomic study showed enriched

vitamin and cofactor biosynthesis genes were observed in

developing infant guts [50]. Also functional genomics analysis

showed that some bacteria were unable to synthesize several

vitamins, cofactors, and amino acids, and need to be taken up

from the human intestine [51]. All these studies showed a

complicated relationship between the host and its microbiota.

Here 17 gene families involved in biosynthesis and metabolism

of pantothenate, CoA, riboflavin, vitamin B6, thiamine, biotin,

porphyrin, chlorophyll and folate were selected. For example,

gene families encoding 3-demethylubiquinone-9 3-methyltrans-

ferase, riboflavin synthase, pyridoxal kinase, and thiamine

kinase that function as the terminal step of biosynthesis of

ubiquinone, riboflavin, thiamine, and vitamin B12 were

selected, respectively.

(viii) Metabolism and biosynthesis of terpenoids and

polyketides. Terpenoids and polyketides are natural products

that can be found in all living organisms, with the potential

function of anti-inflammatory and anticancer though the majority

of them remain functionally unknown [52]. Five gene families

related with terpenoid biosynthesis were selected.

(ix) Nucleotide metabolism and biosynthesis. Nucleotides

are the basic structural units of DNA and RNA, and also participate

in cellular signaling as well as cofactor synthesis. We selected 13

gene families involved in nucleotide metabolism.

(x) Translation. Three gene families involved in translation

processes were selected.

Summary of HuMiChip probes and target information
A total of 36,802 probes targeting 139 gene families were

designed for HuMiChip, covering 50,007 coding sequences (CDS).

Among these, 25,003 were sequence-specific probes that each

probe targets only one sequence, and 11,799 were group-specific

probes that each probe targets multiple sequences with high

similarities (Table 1). Specifically, 15,175 (41.2%) probes targeted

59 amino acids metabolism genes, 6,217 (16.9%) targeted 23 genes

for metabolism of other amino acids, 9,386 (25.5%) targeted 35

carbohydrate metabolism genes, 4,992 (13.6%) targeted 14 energy

metabolism genes, 6,507 (17.7%) targeted 14 glycan biosynthesis

and metabolism genes, 2,415 (6.6%) targeted 6 lipid metabolism

genes, 3,660 (9.9%) targeted 17 cofactor and vitamin metabolism

genes, 1,841 (5.0%) targeted 5 terpenoids and polyketides

metabolism genes, 4,437 (12.1%) targeted 13 nucleotide metab-

olism genes, and 429 (1.2%) targeted 3 translation genes. Also,

8068 16S rRNA gene degenerate probes as positive control,

36563 negative control probes designed from seven thermophile

strains, and 6000 identical common oligonucleotide reference

standard (CORS) [53] probes for data normalization and

comparisons were also included. Specificity for both positive and

negative control probes as well as CORS was also verified by

searching against NCBI nt database.

Computational evaluation of probe specificity
The specificity for all HuMiChip probes was computationally

evaluated against the MotherDB based on sequence identity,

continuous stretch length, and free energy. For sequence-specific

probes, the maximum identity, maximum stretch length, and

minimal free energy to their closest non-target sequences were

calculated. More than 83% of probes showed maximum sequence

identities of 60% or lower to their non-targets. Only 7.4% of

probes showed 80%,90% sequence identity, 3.3% had 19,20

base continuous stretch, and 5.5% had 235 to 225 kcal mol21

free energy to their non-targets (Figure 1 A, B, C). For group-

specific probes, the minimum identity, minimum stretch length,

and maximum free energy to its group members were calculated.

Approximately 75% of group-specific probes were identical to

their group members, and more than 99% showed 285 to

265 kcal mol21 free energy to their group members (Figure 1 D,

E, F). All these results were consistent with the probe design

criteria [26], suggesting the HuMiChip probes are specific to their

targets.

Table 1. Summary of designed probes and covered coding sequence information of HuMiChip based on gene categories.

Microbial functional process #genes #probes
#sequence-specific
probes

#group-specific
probes #covered CDS

Amino acid metabolism and biosynthesis 59 15,175 10,245 4,930 21,241

Metabolism and biosynthesis of other amino acids 23 6,217 4,388 1,829 8,203

Carbohydrate metabolism 35 9,386 6,236 3,150 12,109

Energy metabolism 14 4,992 3,292 1,700 6,359

Glycan biosynthesis and metabolism 14 6,507 4,379 2,128 7,911

Lipid metabolism and biosynthesis 6 2,415 1,585 830 2,905

Metabolism and biosynthesis of cofactors and vitamins 17 3,660 2,464 1,196 4,879

Metabolism and biosynthesis of terpenoids and
polyketides

5 1,841 1,247 594 2,517

Nucleotide metabolism 13 4,437 3,013 1,424 6,421

Translation 3 429 270 159 765

Total* 139 36,802 25,003 11,799 50,007

*Gene families targeting human microbiomes are selected from KEGG pathway database, and may participate in multiple pathways. The total number of probes and
covered coding sequences is based on non-redundant genes included in all pathways, but it is not calculated as the sum of all sub-categories.
doi:10.1371/journal.pone.0090546.t001
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Application of HuMiChip to human gut and oral
microbiomes

The HuMiChip was applied to analyze the functional

composition and structure of human oral and gut microbiomes

from 86 individuals (62 oral samples representing five groups of

oral microbiota, and 24 fecal samples representing gut microbi-

ota). Signal intensities for each probe were normalized by the

mean signals from all spiked CORS probes. In total, 14,460

probes were detected in at least three out of 12 or 13 samples in

each group, with an average of 6,699 probes detected per sample.

Detrended correspondence analysis (DCA) of all detected genes

showed that microbial communities in human gut samples were

well separated from those in oral samples (Figure 2), suggesting

significantly different microbial functional gene composition and

structure between gut and oral microbiota. The significance was

also verified by three different non-parametric multivariate

statistical methods (ANOSIM: R = 0.707, P = 0.001; adonis:

F = 0.29, P = 0.001; MRPP: d= 0.365, P = 0.001). Also, a clear

trend of separation of periodontitis patients’ oral samples from

other oral samples could be observed (ANOSIM: R = 0.191,

P = 0.001; adonis: F = 0.086, P = 0.001; MRPP: d= 0.326,

P = 0.001). No clear separation was observed between samples

collected from healthy individuals and patients with moderate

dental caries (ANOSIM: R = 0.046, P = 0.346; adonis: F = 0.011,

Figure 1. Computational evaluation of sequence-specific (A, B, C) and group-specific probes (D, E, F) at (A) maximal sequence
identities, (B) maximal stretch length and (C) minimal free energy with their closest non-target sequences, and (D) minimal
sequence identities, (E) minimal stretch length and (F) maximal free energy with their group targets.
doi:10.1371/journal.pone.0090546.g001

HuMiChip for Profiling Human Microbiomes
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P = 0.354; MRPP: d= 0.297, P = 0.32) (Figure 2). However,

significant differences were observed between patients with severe

dental caries and individuals who were healthy or patients with

moderate dental caries (ANOSIM: R = 0.186, P = 0.008; adonis:

F = 0.074, P = 0.016; MRPP: d= 0.332, P = 0.02), suggesting a

progressive shift of microbial community composition and

structure during the development of dental caries.

In order to see how oral microbiota changes at different stages

of periodontitis, response ratio analysis of functional gene

categories between moderate or advanced periodontitis patients

and healthy individuals was carried out at a 95% confidence

interval level. An obvious shift of most functional gene categories

was observed between moderate and advanced periodontitis

patients with most gene families having decreased abundances in

advanced periodontitis (Figure 3A and 3B). For example, the

abundance of lipid metabolism genes was significantly (P , 0.05)

higher in moderate periodontitis patients compared to healthy

individuals (Figure 3A), but became insignificant with decreased

abundance in advanced periodontitis patients (Figure 3B). Also, no

significant changes were found for gene categories such as

carbohydrate metabolism, nucleotide metabolism, and energy

metabolism in moderate periodontitis patients (Figure 3A), while

significantly decreased abundances were observed in advanced

periodontitis patients (Figure 3B). In addition, other gene

categories, such as glycan biosynthesis and metabolism, metabo-

lism of other amino acids, amino acid metabolism, metabolism of

cofactors and vitamins, and translation, remained significantly

decreased in both moderate and advanced periodontitis patients,

but further decreased levels were observed in advanced patients

(Figure 3A and 3B). All the above results indicated that a shift in

oral microbiota with decreased abundances would be associated

with the from-moderate-to-advanced periodontitis status, and

HuMiChip is a useful tool for functional profiling of human

microbiomes.

Comparative evaluation of HuMiChip against NGS
technologies

The HuMiChip results targeting human gut and healthy oral

samples were then compared with the relative abundances of

corresponding gene families revealed by the HMP project using

next generation sequencing (NGS). Gene family abundance

datasets were downloaded from http://www.hmpdacc.org/

HMMRC/, and profiles targeting human stool and subgingival

plaque samples were extracted and analyzed. For the human gut

samples, 121 of the 139 gene families showed a significant

(P = 4.581E-027) correlation between HuMiChip and HiSeq

analyses with a Pearson correlation coefficient of 0.79 (Figure

4A). For the human oral subgingival samples, 112 of 139 gene

families had a significant (P = 2.033E-022) correlation with a

Pearson correlation coefficient of 0.76 (Figure 4B). These results

suggested that the gene family profiles identified by HuMiChip

Figure 2. Detrended correspondence analysis of all functional
genes detected by HuMiChip. A total of 86 samples were analyzed:
12 subgingival/supragingival plaque samples from healthy individuals
(yellow), 25 supragingival plaque samples of which 12 from patients
with moderate dental caries (blue) and 13 from patients with severe
dental caries (pink), 25 subgingival plaque samples of which 12 from
patients with moderate periodontitis (green) and 13 from patients with
advanced periodontitis (gray), and 24 fecal samples representing
human gut microbiome (red). A total of 14,460 probes detected in at
least three out of 12 or 13 samples in each group were analyzed.
doi:10.1371/journal.pone.0090546.g002

Figure 3. Response ratio analyses of changes of gene abundances based on categories. A) Moderate periodontitis patients vs. healthy
individuals; B) Advanced periodontitis patients vs. healthy individuals. Error bar symbols plotted at the right of dashed line indicated increased
relative abundances in moderate/advanced periodontitis patients, while error bar symbols plotted at the left of dashed line indicated decreased
relative abundances in healthy individuals.
doi:10.1371/journal.pone.0090546.g003
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and NGS were well consistent with each other. In addition, it was

noted that the lowest gene family abundance that could be

detected by HuMiChip was about 0.001%, suggesting a high

sensitivity of HuMiChip in detecting gene families of low

abundance.

Discussion

Microbial ecological microarrays such as GeoChip, PathoChip,

StressChip, PhyloChip, HITChip, HuGChip, and several other

microarrays have been developed and applied to analyze

microbial communities in different habitats [18,19,20,21,22,

26,54,55,56,57]. These technologies were demonstrated to be

powerful for functional and phylogenetic characterization of

microbial communities, and linking them with ecosystem processes

and functions. Most microbial ecological microarrays targeting

human microbiomes are based on 16S rRNA genes, and are

mainly suitable for phylogenetic profiling of human microbiomes.

The HuMiChip developed in this study targeted 139 functional

gene families that play important roles in various metabolic

pathways, and can be used for functional profiling of these

targeted gene families.

Since the HuMiChip developed in this study was developed

mainly for microbial community analysis from different human

body sites, specificity and sensitivity are two critical issues for

successful application of microbial ecological microarrays. To

insure the specificity of probes included in HuMiChip, previously

experimentally evaluated parameters were used for highly specific

probe design [58,59]. In addition, extensive evaluations for

functional gene arrays designed with the same criteria were

carried out using pure culture DNA, mock community DNA, and

environmental samples, suggesting high specificity and sensitivity

for those microarrays [26,36,54,60,61,62,63]. Since the same

criteria were used in the HuMiChip development, it is expected

that the HuMiChip should have as high specificity and sensitivity

as these functional gene arrays. Moreover, specificity for all probes

were computationally checked and evaluated against the whole

MotherDB, which included both full genomes and metagenomes.

Finally, comparative evaluation of functional gene profiles

revealed by HuMiChip and NGS technologies suggested signifi-

cant correlations between these two approaches, and HuMiChip

was able to detect functional gene families at as low as 0.001%

relative abundance. All results suggest that HuMiChip is a specific

and sensitive tool for functional profiling of human microbiomes.

The HuMiChip was applied to characterize the functional gene

families in human gut and human oral microbiome. As expected,

the overall structures of detected functional gene families in the

human gut were clearly separated and significantly different from

human oral samples, as suggested by both DCA and three non-

parametric statistical methods, which was also consistent with

several previous studies using NGS approaches of 16S rRNA

genes and shotgun metagenomes [6,64,65]. Significantly different

overall functional structures of oral microbial communities were

also observed between healthy individuals and patients with

periodontitis, indicating that periodontitis might be a disorder of

the whole microbial community, which is generally consistent with

previous studies [7,8,66,67,68]. Interestingly, significant differenc-

es were not observed between the oral microbiome from healthy

individuals and patients with moderate dental caries, but observed

between patients with severe dental caries and individuals who

were healthy or with moderate dental caries. Such results

suggested that the overall investigated functional gene profiles of

microbial communities associated with moderate dental caries,

which might be caused primarily by a few bacterial species such as

Streptococcus mutans and Lactobacilli [9], were less affected. However,

when dental caries develop to a severe stage, the whole microbial

community was affected. Similar results were also observed

between healthy individuals and patients with dental caries in a

previous metagenomic study [6]. Both the changes of oral

microbiome in patients with dental caries and periodontitis from

moderate to severe status suggested a progressive change of

functional gene profiles in response to the diseases. And

HuMiChip successfully detected such progressive changes.

Periodontitis is a complex inflammatory disease in tooth

supporting tissues, and is initiated by bacteria embedded in

subgingival dental plaques involving complex interactions with

their human hosts [67,69]. The results revealed in this study

provided some implications for the potential pathogenesis process

of this human oral disease. For example, significantly increased

abundances of functional genes involved in lipid metabolism were

found in moderate periodontitis patients when compared with

healthy individuals. Short-chain fatty acids can function to disrupt

host defense systems using different mechanisms, such as the

induction of apoptosis in immune cells [70,71,72] and gingival

epithelial cells [73], and alteration of cell function and gene

expression in human gingival fibroblasts [74,75]. More interest-

ingly, the abundances of lipid metabolism gene families decreased

when periodontitis developed to an advanced stage, suggesting

Figure 4. Comparative analysis of functional gene profiles as revealed by HuMiChip (total signal intensity) and NGS platforms
(relative abundance): A) human gut samples. B) human oral samples.
doi:10.1371/journal.pone.0090546.g004
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that lipid metabolism gene families might be important triggers for

periodontitis development.

Currently, most functional profiling studies for human micro-

biomes were carried out by next generation sequencing (NGS)

platforms, which should be used as gold standard for comprehen-

sive analysis in exploratory studies of microbial communities. The

HuMiChip developed in this study provides an alternative way for

functional analysis of human microbiomes. Compared with NGS

technologies, the main disadvantage for HuMiChip as well as

other functional gene arrays is that the probes/genes covered by

the chip are always limited, thus is not suitable for finding new

genes/populations to define the extensive diversity of microbial

communities in the environment. In addition, the limited coverage

of probes/genes also restricts the accurate estimation of (relative)

abundance in the community, making it more suitable for

comparative studies but not exploratory studies. However,

functional gene arrays still feature several advantages, especially

for fast and cost-effective routine analysis of interested gene

families. First, although sequencing technology is becoming

cheaper and generates huge amounts of data, data analysis (e.g.,

assembly, function and taxonomy assignment) and interpretation

is still extremely challenging and costly [76,77], especially for

complex microbial communities. In contrast, microarray data

analysis methods are rapid, mature, and cost-effective. Second,

NGS generates huge amounts of sequences (for both genes of

interest or not), which is more suitable for discovery studies of both

known and unknown gene content in the environment, while

microarrays contain only genes of interest and can be used by

researchers’ for routine studies of interested genes across many

samples within a short time. In addition, due to the nature of NGS

technologies, highly abundant gene families such as house-keeping

genes are repeatedly sequenced, while low abundant, but

functionally important genes are hardly sequenced, resulting in

limited observations of these gene families. In contrast, gene

families included on functional gene arrays are specifically selected

according to researchers’ interests, and low abundant genes can be

well captured. Thus, we recommend a complementary use of

functional gene arrays for routine studies of interested gene

families, and NGS for exploratory discovery studies of microbial

communities. Novel gene sequences captured by NGS can be used

for developing more comprehensive microarrays (e.g., functional

gene arrays).

In conclusion, we have developed the HuMiChip for functional

profiling of human microbiomes. A total of 36,802 probes

targeting 139 gene families involved in key microbial functional

processes in human microbiomes were included on HuMiChip,

covering 50,007 CDS from 322 sequenced genomes as well as 31

shotgun metagenomes. Computational evaluation indicates that all

HuMiChip probes are highly specific to their targets. Our analysis

of the human oral and gut microbiomes suggests that the

HuMiChip is a useful and high throughput tool to analyze the

functional diversity, composition, structure, metabolic potential

and dynamics of human microbiomes. The gene family profiles

identified by HuMiChip were consistent with those obtained by

NGS technologies. Further development of HuMiChip will target

more sequenced genomes, as well as metagenomes, and develop

strain/species-specific probes for strain/species identification[78].

Supporting Information
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(DOCX)

Table S1 Summary of functional gene categories,
families, names, and their involved pathways and probe
infromation on HuMiChip.

(XLSX)

Table S2 Gene families selected for non-standard
amino acids metabolism.

(XLSX)

Author Contributions

Conceived and designed the experiments: QT ZH YL YC YD L. Lin CH

JV XZ WS L. Li JX JZ. Performed the experiments: YL YC YT. Analyzed

the data: QT ZH YL YC TY. Contributed reagents/materials/analysis

tools: JV LW XZ L. Li JZ. Wrote the paper: QT ZH JV JZ.

References
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