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a b s t r a c t

Open pond has been widely used for microalgae culture. However its lower biomass pro-

ductivity damaged its economic viability used as cultivation systems for feedstock pro-

duction. In this study we introduced a forced L/D circulation operation to conventional

open pond, in which the culture medium was pumped to circulate between an illuminated

shallow pond and a fully darkened tank. The growth of microalgae was dominated by the

photic retention time and dark/light ratio of the forced L/D circulation. The optimal values

were determined to be 3.98 for dark/light ratio and 5.80 min for photic retention time by

response surface methodology, at which, a biomass productivity of 36.5 g m�2 d�1 for

Scenedesmus dimorphus was approached in laboratory. Outdoor cultivation practice with the

forced light/dark circulation of pond was also carried out and averaged 28.5 g m�2 d�1

biomass productivity was achieved, which is double of that by conventional open pond

cultivations in 250 mm or 50 mm water depth without forced circulation.

ª 2013 Published by Elsevier Ltd.
1. Introduction

Microalgae are considered as the most promising feedstock

for biofuel production due to the high productivity potential,

less competition with food production and less negative

impact on the environment when compared with other

biomass feedstock options [1e3]. Although intensive efforts

have been made on microalgae biofuel research, no com-

mercial production systems have achieved economic viability

[3e7] mainly due to the low cultivation efficiency and high

cost. Of the prevailing microalgae culturing devices, open

pond has the widest applications [8e10] because of its easy

construction, mature scale-up and power input effective [11].

However, the poor biomass productivity at field level is its

fatal drawback considering the competition of land for tradi-

tional crops when commercial developments of microalgae

biofuel are promoted.
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In order to improve the cultivation efficiency of open pond,

many methods to enhance the mixing and CO2 transfer have

been developed. However, solar illumination is the most

dominative factor to influence the growth of microalgae at

field level of pond [12]. Open pond is generally operated at the

water level higher than 200mm. Because of the attenuation of

solar light, there are several irradiate zones with different

light intensities alone the light path. The illumination in-

tensity of the pond is below the photo-compensation point for

algae growth or totally blacked except the upmost thin layer

[13]. As a result, photosynthesis of microalgae is limited for its

growth. Though mixing in light path direction may improve

the cultivation efficiency, the paddle-wheel is ineffective to

produce such kind of mixing at economic power input.

Thewhole photosynthesis process includes two stages, viz.

‘light’ stage in which the light energy is absorbed to oxidize

the water and produce NADPH and ATP, ‘dark’ stage in which

mailto:liutz@qibebt.ac.cn
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.biombioe.2013.05.034&domain=pdf
www.sciencedirect.com/science/journal/09619534
http://www.elsevier.com/locate/biombioe
http://dx.doi.org/10.1016/j.biombioe.2013.05.034
http://dx.doi.org/10.1016/j.biombioe.2013.05.034
http://dx.doi.org/10.1016/j.biombioe.2013.05.034


b i om a s s a n d b i o e n e r g y 5 6 ( 2 0 1 3 ) 4 6 4e4 7 0 465
the NADPH and ATP are fixed into carbon hydrate. This

character of photosynthesis provides a way of alternate illu-

mination by light/dark (L/D) cycles to improve the microalgae

growth [13e17] without extra illumination. The frequency of

the intermittent irradiation is thought to be an important

factor to influence solar utilization and photosynthetic effi-

ciency [18]. Grobbelaar [16] has grouped the fluctuating L/D

cycles into three scales: (i) High frequency fluctuation of less

than 100 ms (10 Hz); (ii) Medium frequency fluctuation from

seconds to minutes; (iii) Low frequency cycles from hours to

natural dayenight alternation. The first scale gives rise to the

“flashing effect”, which has been reported to lead to higher

growth rates [19e22]. However such high frequency fluctua-

tion is unfeasible in engineering practice and power input for

mass cultivation. Low frequency cycle from hours to natural

dayenight alternation has no meaning for improvement of

microalgae cultivation because all current open pond culti-

vations are natural day/night alternation. What’s more

interesting is the medium frequency fluctuations of seconds-

to-minutes level because of their economic feasibility in

practice. Merchuk [23], Bosca [24] and Wang [25] have showed

that algae exposed to certain L/D cycles irradiation has high

photosynthetic activity and specific growth rates. However,

what is the appropriate frequency is conflicting of most ref-

erences. For example, Janssen [26] found L/D cycles in the

range 6e87 s leads to similar or lower growth rates. Grobbelaar

[16] found no influence of L/D cycles in the range 1e263 s on

the volumetric productivity. Vejrazka [27] showed that using a

duty cycle of 0.5, L/D cycles of 1 and 10 Hz resulted about 10%

lower biomass yield, but of 100 Hz resulted about 35% higher

biomass yield than the yield obtained in continuous light. Xue

et al. [28] found that larger photosynthetic enhancement

could be expectedwith the increase of L/D frequency at higher

light intensity, while light integration effect was totally absent

under low light fractions.

Here we introduced the forced L/D circulation to open

pond, by which the conventional open pond with deep water

level (ca. 200 mm depth for example) was replaced by a

shallow lighted open pond (ca. 50 mm depth for example)

connected with a fully dark tank (containing all other culture

medium). The volume ratio of the shallow pond to the dark

tank and the flow rate could be adjusted to produce different

frequencies of the forced L/D circulation. The influence of the

photic retention time and dark/light volumetric ratio on

biomass productivity was investigated, and the optimal

values of the two factorswere determined by response surface

methodology. Outdoor experiments were also conducted to

validate the enhancement on algal growth.
Fig. 1 e Schematic figure of the forced L/D circulation

culture device in laboratory.
2. Materials and methods

2.1. Algal strain and growth medium

Microalgal species of Scenedesmus dimorphus was isolated

from local wastewaters (Qingdao, China) and maintained

in the CAS Key Laboratory of Biofuel. The strain was main-

tained in 250 cm3 Erlenmeyer flasks containing 100 cm3 of

modified BG-11 medium [29] in an incubator at a temperature

of 25 �C and under continuous illumination of 100 mmol m�2 s.
The composition of modified BG-11 was (g m�3): NaNO3, 1500;

MgSO4$7H2O, 75; CaCl2$2H2O, 36; citric acid, 6.0; Na2EDTA, 1.0;

ferric ammonium citrate, 6.0; Na2CO3, 20.0; KH2PO4$H2O, 40.0;

ZnSO4$7H2O, 0.222; CuSO4$7H2O, 0.079; MnCl2$4H2O, 1.81;

NaMoO4$2H2O, 0.39; Co(NO3)2$6H2O, 0.0494; H3BO3, 2.86. The

initial culture was inoculated with biomass concentration

about 800 g m�3 and 300 g m�3 for indoor and outdoor

experiment, respectively.

2.2. Experimental methods

2.2.1. Indoor experiments
A laboratory device was constructed as shown in Fig. 1. The

setup consists of a glass bubbling column and a glass tank.

The column with the diameter of 50 mm, containing 700 cm3

of culture medium, was bubbled with CO2 in air (volume

ratio ¼ 3%) at a gas to liquid mixing rate of 0.15 m3 m�3 min�1

to support carbon source and maintain the pH within the

range of 7.5e8.5. A glass tank containing different volume of

BG11 culture medium was fully wrapped by aluminium

foil and connected with the glass bubbling column. A peri-

staltic pump was used to control the flow rate of the

circulation of culture medium. The glass tank was also

aerated with CO2 in air (volume ratio ¼ 3%) at a gas to liquid

mixing rate of 0.15 m3 m�3 min�1. Continuous illumination of

400 mmolm�2 s�1 from one side of the columnwas provided by

cold fluorescence lamps. The illuminated surface area of the

glass column was calculated as 280 cm2 (area for the cross-

section of the column). The temperature of the culture broth

was kept at 25 � 3 �C during the experiments. All the experi-

ments had three duplicates.

In this research, two parameters were defined to describe

the frequency of the forced circulation.
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Table 1 e Central composite design (CCD) and
experimental values.

Runs Photic
ratio, K (�)

Photic
retention
time, tb
(min)

Areal biomass
productivity, (g m�2 d�1)

Observed
values

Predicted
values

1 1.7 2.2 27.8 26.1

2 5.3 2.2 30.3 29.8
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1) tb: photic retention time. It presented how long the algal

cells will be illuminated in photic zone in each L/D cycle. It

was calculated as the result of the volume of culture me-

dium in photic zone (Vb, in cm3) divided by the flow rate of

the culture broth controlled by the peristaltic pump (U, in

cm3 min�1).

tb ¼ vb

U
(1)
3 1.7 7.8 29.5 29.0

4 5.3 7.8 33.8 32.8

5 1.0 5.0 24.8 25.9

6 6.0 5.0 30.8 31.2

7 3.5 1.0 27.4 28.3

8 3.5 9.0 31.9 32.6

9 3.5 5.0 34.4 36.1

10 3.5 5.0 37.4 36.1

11 3.5 5.0 36.6 36.1
2) K: dark/light ratio. It presented how many algal cells are in

dark and howmany cells are lighted in a circulation cycle. It

could be calculated as the ratio of the volume in dark zone

to the volume in photic zone, as shown in following:

K ¼ Vd

Vb
(2)
12 3.5 5.0 37.0 36.1

13 3.5 5.0 35.0 36.1

Fig. 2 e Schematic figures three kinds of open pond

cultivation systems, A: open pond with 250 mm water

depth, B: open pond with 50 mm water depth, C: open

pond with forced L/D circulation.
where, Vd presented the volume of the culture medium in

dark zone.As the results, the period, T of each forced L/D cir-

culation cycle could be calculated by equation (3):

T ¼ Vd þ Vb

U
¼ ð1þ KÞtb (3)

The influence of tb and K on the biomass productivity was

investigated and then central composite rotatable design

(CCRD) was used to optimize the above two factors. The CCRD

experiment comprised 13 experimental runs with 4 factorial

points, 4 axial points, and 5 central points for replication

(Table 1).

A second-order polynomial regression (equation (4)) was

used to setup the correlation between the areal biomass pro-

ductivity with parameters K and tb.

Y ¼ b0 þ
X

bixi þ
X

bijxixj þ
X

biix
2
i (4)

where Y presented areal biomass productivity, xi and xj are the

independent variables (K and tb); b0 was the regression coef-

ficient at centre point; bi was the linear coefficient; bij is the

interaction coefficient and bii was the quadratic coefficient.

Analysis of variance (ANOVA) was performed using Design

Expert statistical package (version 7.1.3, Stat-Ease Inc., USA) to

evaluate the significance of the model and coefficients.

2.2.2. Outdoor validation practice
Three kinds of ponds at bench scale were constructed, as

shown in Fig. 2. Ponds A and B were the same size but had

different water depth of 50 mm and 250 mm (loading of

0.035 m3 and 0.175 m3 of culture broth) respectively. The

hybrid system C consisted a pond (the same as B but con-

taining 35 l of culture broth) serving as the photic zone and a

dark tank loading 0.14 m3 of culture broth serving as the dark

zone. The illuminated surface area of all the three culture

devices was the same of 0.7 m2. The medium was pumped

from a dark tank by a diving pump (Atman AT-101, China) and

enters the photic pond through an aperture pipe (the length of

the aperture pipe is about 400 mm with 40 holes and the

diameter of the hole is 3 mm). The photic retention time (tb)

was fixed as 6min by the diving pump and the dark/light ratio

(K ) was fixed as 4 (0.14/0.035). CO2 enriched compressed air

(volume ratio ¼ 3%) was injected into the three ponds with a
gas to liquid mixing rate of 0.15 m3 m�3 min�1 to supply car-

bon. All the experiments were done in May of 2011, at Qingdao

(latitude: 36�570N; longitude: 120�220E), China, and the data

shown later (Fig. 6A and B) was the average of two batch

cultivations.

2.3. Analytical methods

The volumetric biomass density (kg m�3) at 24 h intervals was

measured according to the method described by Chiu [30]. The

areal biomass density (g m�2) (all the algal biomass per square

meter of illumination) and areal biomass productivity

(gm�2d�1) (all thenet increaseofalgalbiomasspersquaremeter

of illumination per day) were calculated to compare the culti-

vation efficiency of different forced L/D circulation operation.
3. Results and discussion

3.1. Effect of dark/light ratio (K ) and photic retention
time (tb) on biomass productivity

The effects of the dark/light ratio on the cultivation were

elucidated in Fig. 3. The volumetric density of algal biomass

http://dx.doi.org/10.1016/j.biombioe.2013.05.034
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Fig. 3 e Effects of dark/light ratio on microalgae growth, A: volumetric density of microalgae, B: areal biomass density of

microalgae, C: areal biomass productivity.
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decreased with the increase of dark/light ratio and the control

of single bubbling column had the highest volumetric density

(Fig. 3A). Higher dark/light ratio led to a higher areal biomass

density and the control column had the lowest areal biomass

density. The averaged areal biomass productivities of 7 days

culture at different volumetric ratio were shown in Fig. 3C.

The increase of the total volume of culture medium by in-

crease of dark/light ratio with the same retention time has led

to bigger biomass productivity. The highest productivity of

33.5 g m�2 d�1, more than doubling to that in column control

was obtained at the dark/light ratio of 4. Further increase of

the dark/light ratio did not increase the biomass productivity

further. In facts, the net increase of algal biomass at any

cultivation device is the sum of the biomass production by

photosynthesis and the consumption by algal cells respira-

tion. At the same circulation flow rate, more volume of culture

in dark zone means more biomass loss by algal cells respira-

tion. Only when the increase of the algal growth is higher than

the consumption by algal cells respiration, the forced circu-

lation performed the enhancement effect for biomass

productivity.

The effects of the photic retention time on algal volumetric

density and areal biomass density at the fixed dark/light ratio

of 4 were shown in Fig. 4A and B. For the forced L/D circula-

tions, the areal biomass density was different with different

photic retention time. It should be noted that for the forced

L/D circulations, the total volume of the culture medium with
different photic retention time was the same, so the differ-

ence of the biomass density was only produced by the photic

retention time. From Fig. 4B, even at very slow forced circu-

lation rate (tb ¼ 350 min, equalling about one cycle circulation

per day, for example), the biomass output had a slight in-

crease compared with the control column without forced

circulation. The highest biomass productivity of averaged

33.5 g m�2 d�1 of 7 days cultivation was reached when the

photic retention timewas 3.6minwith the dark/light ratio of 4

(Fig. 4C).

3.2. Optimization of forced L/D circulation by response
surface methodology

The above result has exposed the important effects of both the

dark/light ratio and photic retention time on the biomass

productivity of microalgae in the forced L/D circulation. Cen-

tral composite design (CCD) was used (Table 1) to identify the

interaction and to determine the optimal values of the two

factors. The response surface plot of biomass production as a

function of dark/light ratio and photic retention time was

shown in Fig. 5. An increase of K with tb up to the optimal

point increased the biomass productivity to a maximum

level, and a further increase in k with tb the trend was

reversed. The maximum response of areal biomass produc-

tivity of 36.5 g m�2 d�1 was occurred at K ¼ 3.98 and

tb ¼ 5.80 min. At this point, the period time of the forced

http://dx.doi.org/10.1016/j.biombioe.2013.05.034
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Fig. 4 e Effects of photic retention time on microalgae growth, A: volumetric density of microalgae, B: areal biomass density

of microalgae, C: areal biomass productivity.
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circulation was T ¼ ð1þ 3:98Þ � 5:8 ¼ 28:9 min. It should be

noted that such circulation period of 28.9 min and the photic

retention time of 5.80 min were located in the range of the

‘middle level’ as defined by Grobbelaar [16]. Such frequency in

‘middle level’ was engineering practicable.

The significance of the dark/light ratio, photic retention

time and their interaction on the biomass productivity was
Fig. 5 e Response surface plot of areal biomass productivity

as a function of dark/light ratio and photic retention time.
analysed by Fisher’s F-test (Table 2). It was found that all the

linear and quadratic terms coefficients for both K and tb were

significant. What is interest is that there were no interactions

on biomass output between K and tb, which meant that the

circulation period time T (see equation (4)) had no significant

influence on the biomass productivity. A second-order poly-

nomial function to correlate theareal biomass productivity and

with both K and tb, was obtained in equation (5). The analysis of

variance (ANOVA) showed that this regression model was sta-

tistically significant at a 95% confidence level ( p < 0.05).

Y ¼ 6:29þ 9:45Kþ 4:03tb � 1:20K2 � 0:35t2b (5)

According to the equation (5), the predicted response along

with the experimental data of different K and tb were pre-

sented in Table 1. It revealed a close correspondence between

the values.

3.3. Outdoor cultivation with forced L/D circulation

To validate the statistical model, outdoor cultivation experi-

ments in three kinds of ponds (Fig. 6) were carried out. The

dark/light ratio and photic retention timewere set as K¼ 4 and

tb ¼ 6 min, which were very close to the above optimal point

(K ¼ 3.98, tb ¼ 5.8 min). Though the cell concentration in

shallow pond (50mmculture depth) cultivation reached about

2 kg m�3 after 7 days cultivation (Fig. 6A), the averaged areal

biomass productivity was only 12.1 g m�2 d�1. It almost

equalled to that of 11.3 g m�2 d�1 for conventional pond with

http://dx.doi.org/10.1016/j.biombioe.2013.05.034
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Fig. 6 e Biomass density and productivity of three open

pond, A: volumetric biomass density.
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250 mm culture depth (Fig. 6B). When S. dimorphus was grown

in the forced L/D circulation pond, biomass productivity ca.

22e33 g m�2 d�1 (averaged value was 28.5 g m�2 d�1) had been

achieved in the 7 days culture. This value was more than two

times of that in 50mm shallow pond and 250mmdepth pond.

It should be noted that all these three cultivation systems

occupied the same land area because in the engineering as-

pects, the dark tank could be constructed underneath of the

photic pond to save the illuminated land for the forced L/D

circulation cultivation. A noticeable point is that the outdoor

productivity of 28.5 g m�2 d�1 for forced L/D circulation is
Table 2 e The significance of the dark/light ratio, photic
retention time and their interaction by Fisher’s F-test.

Source Sum of
squares

df Mean
square

F-value p-Value Significance

Model 181.54 4 45.39 26.82 0.0001 Significant

X1eK 17.71 1 17.71 10.47 0.0120 Significant

X2etb 17.27 1 17.27 10.21 0.0127 Significant

X2
i eK2 97.39 1 97.39 57.55 <0.0001 Significant

X2
2et2b 54.97 1 54.97 32.48 0.0005 Significant
much lower than the expected value of 36.4 g m�2 d�1 ac-

cording to equation (2). The difference in illumination time

might be the reason of this restrained biomass productivity.

The open ponds were only illuminated 12 h (from 6 am to 6

pm), while indoor culture was illuminated for 24 h a day.

Nevertheless the result obviously validated the benefit of

forced L/D circulation onmicroalgae biomass production, and

such an operation was feasible in application without engi-

neering obstacle.
4. Conclusion

It was demonstrated that the forced light/dark circulation

benefited the growth of microalgae in open pond. The dark/

light ratio and photic retention time are the two key factors of

the forced L/D circulation to influence the biomass produc-

tivity of microalgae. The determined optimal frequency by

response surface methodology was the dark/light ratio of 4

and photic retention time of 6 min. Biomass productivity of

28.5 g m�2 d�1 in outdoor experiments validated the

enhancement for algal growth by the forced circulation.
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