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Abstract Calcium-dependent protein kinases (CDPKs) are

Ca2?-binding proteins known to play crucial roles in Ca2?

signal transduction pathways which have been identified

throughout plant kingdom and in certain types of protists.

Genome-wide analysis of CDPKs have been carried out in

Arabidopsis, rice and wheat, and quite a few of CDPKs were

proved to play crucial roles in plant stress responsive signa-

ture pathways. In this study, a comprehensive analysis of

Populus CDPK and its closely related gene families was

performed, including phylogeny, chromosome locations,

gene structures, and expression profiles. Thirty Populus

CDPK genes and twenty closely related kinase genes were

identified, which were phylogenetically clustered into eight

distinct subfamilies and predominately distributed across

fifteen linkage groups (LG). Genomic organization analyses

indicated that purifying selection has played a pivotal role in

the retention and maintenance of Populus CDPK gene family.

Furthermore, microarray analysis showed that a number of

Populus CDPK and its closely related genes differentially

expressed across disparate tissues and under various stresses.

The expression profiles of paralogous pairs were also inves-

tigated to reveal their evolution fates. In addition, quantitative

real-time RT-PCR was performed on nine selected CDPK

genes to confirm their responses to drought stress treatment.

These observations may lay the foundation for future func-

tional analysis of Populus CDPK and its closely related gene

families to unravel their biological roles.

Keywords Populus trichocarpa � CDPK � Phylogenetic

analysis � Gene structure � Expression analysis

Introduction

Plants have developed a sophisticated network of signaling

pathway to survive the changeable environment. As a uni-

versal second messenger, Ca2? plays an important role in the

signal transduction pathways [1]. In plants, various stimuli

cues, such as light, hormones, biotic and abiotic stresses,

could elicit transition changes of intercellular Ca2? con-

centration [2–6], and the Ca2? signatures are sensed and

decoded by different Ca2? sensors which subsequently

transduct them into a series of downstream effects such as

phosphorylation of target proteins [7, 8].
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There are four classes of Ca2? sensors/Ca2?-binding

proteins identified in plants, including calmodulins (CaM),

calmodulin-like proteins (CaML), calcineurin B-like pro-

teins (CBL) and calcium-dependent protein kinases

(CDPK) [9–12]. CaM, CaML and CBL contain Ca2?-

binding domains but lack effector domains. As a result,

they act only as Ca2? sensors and transmit the Ca2? signal

by interacting with target proteins and regulating their

activities [3]. In contrast, CDPK proteins contain a variable

N-terminal domain and three functional domains, including

a catalytic Ser/Thr protein kinase domain, an autoinhibi-

tory domain which functions as a pseudo substrate and a

CaM domain containing EF-hand motifs for Ca2?-binding

capacity [9, 13]. This unique structure enables the CDPK

proteins to function as both Ca2? sensors and effectors.

Calcium-dependent protein kinases are activated by a

relieving autoinhibition mechanism [14]. As a result of

Ca2? binding to the CaM domain, the CDPK protein

undergoes a conformational change that displaces the

autoinhibitory domain from the kinase domain, which

subsequently activates the enzyme. According to the recent

research, all C-terminal regions to the catalytic domain

work together for activation [15, 16].

Calcium-dependent protein kinases are the best charac-

terized Ca2? sensors in plants, which have been identified

throughout the plant kingdom and in certain types of pro-

tists [17]. A number of studies from various plant species

indicated that CDPKs participate in plant response to

diverse stimulus, including light, hormones, mechanical

wounding, abiotic stress and pathogen elicitors. In rice

(Oryza sativa), transgenic plants overexpressing OsCDPK7

showed enhanced tolerance to cold, salt and drought

stresses [18]. OsCDPK13, OsCPK12 and OsCPK21 were

also involved in responses to cold, low nitrogen and salt

stress, respectively [19–21]. In Arabidopsis, CPK10 was

reported to participate in ABA and Ca2?-medicated sto-

matal regulation in response to drought stress [22]. Two

homologs, AtCPK4 and AtCPK11, acted as positive regu-

lators in ABA signaling pathways involved in seed ger-

mination, seedling growth, stomatal movement and salt

stress tolerance [23], while AtCPK12 had been character-

ized as a negative ABA-signaling pathway regulator

recently [24]. In addition, AtCPK6 and AtCPK23 were

demonstrated to play crucial roles in responses to drought

and salt stresses [25, 26]. Although all these studies indi-

cate the involvement of CDPKs in plant responses to

environmental stresses, biological functions of the majority

CDPKs remain uncharacterized until now.

A genome-wide analysis of CDPKs has identified 34

CDPK genes in Arabidopsis [9, 13]. Similarly, 29 CDPK

genes were initially revealed in rice genome [27] and two

more members were annotated in a later release of rice

genomic sequence [28]. In wheat (Triticum aestivum L.),

20 CDPK genes including 14 full-length cDNA sequences

were comprehensively studied [29].

There are also four types of Ser/Thr protein kinases

which are closely related to the CDPKs, namely, CDPK-

related kinases (CRK), calcium and phosphoenolpyruvate

carboxylase kinases (PPCKs), phosphoenolpyruvate car-

boxylase kinase-related kinases (PEPRKs) and calcium and

calmodulin-dependent protein kinases (CCaMKs) [9].

Genome-wide analysis has identified eight CRKs, two

PEPRKs and two PPCKs in Arabidopsis [9], and five

CRKs, two PEPRKs and one CCaMKs in rice [27],

respectively. Function analysis has been performed on a

few CDPK closely related kinases. DMI3, a Medicago

truncatula CCaMK, was demonstrated to be required for

bacterial and fungal symbioses [30], and LeCRK1 was

associated with the tomato fruit ripening process [31].

Compared to the extensive studies of CDPK genes in

many other plant species, few research has been conducted

in model tree species Populus so far. Considering the

importance of Populus in wood production and environ-

ment protection as well as the emergence of CDPK genes

as promising candidates for plant stress tolerance modifi-

cation, it was of interest for us to characterize the CDPK

gene family in Populus.

In this study, we performed a genome-wide analysis of

CDPK gene family in Populus, which identified 30 CDPK

genes and 20 CDPK closely related kinase genes. Fur-

thermore, we examined nine Populus CDPK genes to

confirm their inducible expression patterns under water-

deficient conditions. Our results could provide a subset of

potential candidate CDPK genes for future engineering

modification of stress tolerance characteristics in Populus.

Materials and methods

Database search and sequence retrieval

Sequences of Arabidopsis, rice and wheat CDPK and its clo-

sely related genes were obtained from the Arabidopsis Infor-

mation Resource (TAIR, http://www.Arabidopsis.org/,

release 10.0), rice genome annotation database (http://rice.

plantbiology.msu.edu/, release 5.0) or GenBank (http://

www.ncbi.nlm.nih.gov/genbank/) respectively. Sequences of

Populus were downloaded from Phytozome (http://www.

phytozome.net/). Local blast was performed using Arabid-

opsis CDPK and its closely related kinase proteins as queries

for the identification of genes from Populus. Manual reanno-

tation was also performed using online web server FGENESH

(http://linux1.softberry.com/berry.phtml). All putative candi-

dates were manually verified with the InterProScan program

(http://www.ebi.ac.uk/Tools/pfa/iprscan/) to confirm the

presence of the protein kinase domain and the CaM domain.
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Finally, all obtained protein sequences were further examined

by the Hidden Markov Model of Pfam (http://pfam.sanger.ac.

uk/search)/SMART (http://smart.embl-heidelberg.de/) tools.

Predicted molecular masses were calculated using DNAMAN

software. The EF-hand and N-myristoylation motifs were

predicted by PROSITE (http://prosite.expasy.org/scanprosite/)

[32] and the palmitoylation sites were predicted by CSS-

Palm program [33]. Data of putative alternative splicing sites

of Populus genes were acquired from Phytozome.

Phylogenetic analysis

Multiple alignments of amino acid sequences were performed

by Clustal X (version 1.83) program [34]. The unrooted

phylogenetic trees were constructed with MEGA5.0 [35]

using the Neighbor-Joining (NJ) method and the bootstrap

test carried out with 1,000 replicates.

Chromosomal location and gene duplication

Genes were mapped on chromosomes by identifying their

chromosomal position provided in the Phytozome data-

base. Identification of segmental duplications resulting

from salicoid genome-wide duplications was accomplished

based on duplication coordinates from the Populus genome

assembly v2.1. Blocks in the same colors represent the

homeologous chromosomal segments.

Amino acid sequences from segmentally duplicated pairs

were aligned first by Clustal X v1.83 and the aligned

sequences were subsequently transferred into original cDNA

sequences using the PAL2NAL program (http://www.bork.

embl.de/pal2nal/) [36],which uses the CODEML program of

PAML [37] to estimate synonymous (Ks) and nonsynony-

mous (Ka) substitution rates. Divergence time (T) was cal-

culated using a synonymous mutation rate of k substitutions

per synonymous site per year as T = Ks/2k (k = 9.1 9

10-9 for Populus) [38].

Gene structure analysis

The exon/intron organization for individual gene was

illustrated with Gene structure display server (GSDS)

program (http://gsds.cbi.pku.edu.cn/) [39] by alignment of

the cDNAs with their corresponding genomic DNA

sequences from Phytozome (http://www.phytozome.net/

poplar, release 2.1).

Microarray analysis

The microarray data for various tissues/organs and devel-

opmental stages available at NCBI Gene Expression

Omnibus (GEO) database [40] under the series accession

number GSE13990 were used for the tissue-specific

expression analysis. The series GSE13990 includes

Affymetrix microarray data from nine different tissue

samples representing three biological replicates [41], The

Affymetrix CEL files representing nine tissues/organs as

well as photoperiodic treatments were downloaded from

GEO database at NCBI and imported into GeneSpring GX

(V11.5) software (Agilent Technologies) for further anal-

ysis. The data was normalized by the Gene Chip Robust

Multiarray Analysis (GCRMA) algorithm followed by log

transformation and average calculation. After normaliza-

tion and log transformation of data for all the Populus

genes present on the chip, the log signal intensity values for

Populus probe IDs corresponding to CDPK and its closely

related gene model (v1.1) were extracted as a subset for

further analyses. The tab-delimited files for the average log

signal intensity values were imported into Genesis program

(v1.75) to generate heatmaps [42]. Hierarchical clustering

was performed based on Pearson coefficients with average

linkage rule.

For abiotic and hormone treatments, Affymetrix micro-

array data available at NCBI GEO database under the series

accession numbers GSE17230 (drought stress on leaves),

GSE17223 (drought stress on root tips), GSE9673 (fungal

infection) and GSE17686 were analyzed [43, 44]. GSE17686

is composed of the following five subset series: GSE14893

(nitrogen limitation, genotype 1979), GSE14515 (nitrogen

limitation, genotype 3200), GSE16783 (1 week after leaf

wounding), GSE16785 (90 h after leaf wounding) and

GSE16773 (methyl jasmonate-elicited suspension cell cul-

tures). The Affymetrix CEL files representing different abiotic

and hormone treatments were downloaded from GEO data-

base at NCBI and preprocessed by using GeneSpring GX

(V11.5) software (Agilent Technologies). The data was nor-

malized by GCRMA algorithm followed by log transforma-

tion and average calculation. After normalization and log

transformation of data for all the Populus genes present on the

chip, the log signal intensity values for Populus probe IDs

corresponding to CDPK and its closely related gene models

(v1.1) were extracted as a subset for further analyses.

Expression was indicated as fold change of experimental

treatments relative to control samples. The tab-delimited files

for the average log signal intensity values were imported into

Genesis program (v1.75) to generate heatmaps [42]. Hierar-

chical clustering was performed based on Pearson coefficients

with average linkage rule.

Probe sets corresponding to genes were identified using

an online Probe Match tool available at POParray (http://

aspendb.uga.edu/poparray). For probe sets matching sev-

eral genes models, only those exhibited the highest

hybridization signals consistently across multiple samples

were considered. The list of probe sets corresponding to

Populus CDPK and its closely related genes was provided

in Table S1.
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Plant material and growth conditions

Plant material was collected from clonally propagated one-

year-old Populus deltoides grown in the growth camber

under long-day conditions (16 h light/8 h dark) at

25–28 �C. Drought stress treatment was conducted fol-

lowing the previous method with minor modification [45].

Briefly, the intact root systems of plants were removed

from the pots, washed gently with water to remove soil and

then laid down on filter paper with 70–80 % humility at

25 �C under dime light. Two biological replicates were

performed for each stress treatment. After exposure to

stresses after 0, 1, 3, 6, 12, 24, 36 and 48 h, root tips from

three different plants were harvested at various time points,

flash frozen in liquid nitrogen, and stored at -80 �C for

further analysis.

RNA isolation and qRT-PCR

Total RNA from root tips was isolated by CTAB method

with minor modifications [46]. RNA integrity was verified

by 2 % agar gel electrophoresis. Before cDNA synthesis,

RNA was treated with RQ1 RNase-free DNase (Promega,

Madison, WI, USA) according to the manufacturer’s

instructions to ensure no DNA contamination, and then

the first-strand cDNA synthesis was carried out with

Table 1 CDPK gene family in Populus

Gene

symbol

Gene model (V2.1) Gene model (V1.1) Arabidopsis
orthologue

locus

Score E-

value

No.

of EF

hands

N-

Myrist

N-

Palmit

M.W.

(kDa)

PtCDPK1 POPTR_0006s21490.1 eugene3.00061131 At5g04870.1 831 0.0 4 Y N 67.1

PtCDPK2 POPTR_0008s01530.1 estExt_Genewise1_v1.C_LG_VIII1176 At5g04870.1 954 0.0 4 N Y 64.7

PtCDPK3 POPTR_0010s25090.1 estExt_fgenesh4_pg.C_LG_X2219 At5g04870.1 956 0.0 4 N Y 65.1

PtCDPK4 POPTR_0016s06700.1 gw1.XVI.2117.1 At5g04870.1 821 0.0 4 Y N 68.5

PtCDPK5 POPTR_0001s10070.1 estExt_fgenesh4_pm.C_LG_I0337 At4g23650.1 809 0.0 4 Y Y 58.2

PtCDPK6 POPTR_0003s13380.1 N.A At4g23650.1 806 0.0 4 Y Y 59.0

PtCDPK7 POPTR_0019s11290.1 N.A At4g09570.1 825 0.0 4 N N 58.3

PtCDPK8 POPTR_0004s21710.1 grail3.0066015802 At2g17290.1 967 0.0 4 N Y 62.5

PtCDPK9 POPTR_0009s16970.1 fgenesh4_pm.C_LG_IX000013 At2g17290.1 899 0.0 3 N Y 60.0

PtCDPK10 POPTR_0001s26430.1 fgenesh4_pg.C_LG_I001840 At5g12480.1 903 0.0 4 N Y 59.8

PtCDPK11 POPTR_0009s05740.1 estExt_Genewise1_v1.C_LG_IX3554 At5g12480.1 902 0.0 4 N Y 60.0

PtCDPK12 POPTR_0013s11690.1 gw1.41.252.1 At1g35670.1 824 0.0 4 N N 58.7

PtCDPK12 POPTR_0013s11690.2 gw1.41.252.1 At1g35670.1 758 0.0 3 N N 53.2

PtCDPK13 POPTR_0019s00630.1 estExt_fgenesh4_pg.C_LG_XIX0080 At1g35670.1 777 0.0 4 N N 56.6

PtCDPK14 POPTR_0016s12460.1,

POPTR_0016s12450

fgenesh4_pg.C_LG_XVI001087 At3g51850.1 756 0.0 4 N Y 59.7

PtCDPK15 POPTR_0006s10230.1 N.A At3g51850.1 757 0.0 1 N Y 48.4

PtCDPK16 POPTR_0006s21390.1 gw1.VI.1822.1 At2g38910.1 883 0.0 4 N Y 66.5

PtCDPK17 POPTR_0016s06590.1 gw1.XVI.2082.1 At2g38910.1 520 e-147 4 N Y 66.4

POPTR_0016s06580

PtCDPK18 POPTR_0004s01530.1 N.A At4g04720.1 799 0.0 4 Y Y 60.1

PtCDPK19 POPTR_0021s00750.1 N.A At4g04720.1 817 0.0 4 Y Y 59.9

PtCDPK20 POPTR_0007s02120.1 N.A At2g31500.1 739 0.0 4 Y Y 60.7

PtCDPK21 POPTR_0005s11560.1 fgenesh4_pg.C_scaffold_57000083 At5g66210.2 875 0.0 4 Y Y 63.1

PtCDPK22 POPTR_0007s09580.1 estExt_fgenesh4_pg.C_LG_III0688 At5g66210.2 875 0.0 4 Y Y 63.2

PtCDPK23 POPTR_0002s01850.1 N.A At1g76040.2 754 0.0 4 Y Y 60.8

PtCDPK24 POPTR_0005s26640.1 N.A At1g76040.2 723 0.0 4 N Y 57.6

PtCDPK25 POPTR_0012s07360.1 eugene3.00120658 At1g74740.1 931 0.0 4 Y Y 63.1

PtCDPK26 POPTR_0015s07740.1 fgenesh4_pg.C_LG_XV000415 At1g74740.1 907 0.0 4 Y Y 64.0

PtCDPK27 POPTR_0006s05140.1 estExt_fgenesh4_pm.C_LG_VI0180 At3g57530.1 863 0.0 4 N Y 59.8

PtCDPK28 POPTR_0016s05490.1 estExt_fgenesh4_pm.C_LG_XVI0164 At3g57530.1 887 0.0 4 N Y 60.4

PtCDPK29 POPTR_0001s28150.1 fgenesh4_pm.C_LG_I000794 At5g19360.1 894 0.0 4 Y Y 56.5

PtCDPK30 POPTR_0009s07330.1 fgenesh4_pg.C_LG_IX000914 At5g19360.1 908 0.0 4 Y Y 58.6
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approximately 2 mg RNA using the Revert Aid First

Strand cDNA Synthesis Kit (MBI, Fermentas) and oligo-

dT primers according to the manufacturer’s procedure.

Primers were designed using Beacon Designer v7.0 (Pre-

mier Biosoft International, California, USA) with melting

temperatures 58–60 �C, primer lengths 20–24 bp and

amplicon lengths 50–200 bp. All the primer sequences

were listed in Table S2. qRT-PCR was conducted on

LightCycler� 480 Detection System (Roche, Penzberg,

Germany) using SYBR Premix Ex Taq (TaKaRa, Toyoto,

Japan). Reactions were prepared in a total volume of 20 ll

containing: 10 ll of 2xSYBR Premix, 2 ll of cDNA

template, 0.4 ll of each specific primer to a final concen-

tration of 200 nM. The reactions were performed as the

following conditions: initial denaturation step of 95 �C for

10 s followed by two-step thermal cycling profile of

denaturation at 95 �C for 5 s, and combined primer

annealing/extension at 60 �C for 1 min for 40 cycles. No-

template controls were included for each primer pair and

each PCR reaction was performed in triplicate. To verify

the specificity of the amplicon for each primer pair, a

melting curve analysis was performed ranging from 60 to

95 �C with temperature increasing steps of 0.06 �C/s (five

acquisitions per �C) at the end of each run. Baseline and

threshold cycles (Ct) were automatically determined using

the LightCycler 480 Software (release 1.5.0). Relative

expression was calculated as described previously [47]

using UBQ10 as reference gene.

Results and discussion

Identification of CDPK gene family in Populus

To identify CDPK genes in Populus, Populus genome

database (release 2.1, http://www.phytozome.net/poplar.

php) was searched using known CDPK proteins as query

sequence. Initially, a total of 46 non-redundant putative

CDPK genes were isolated. After manual reannotation and

confirmation of the protein kinase domain and CaM domain,

30 Populus CDPK genes were identified and designated as

PtCDPK1-PtCDPK30 following the nomenclature proposed

in the previous study [48].

As comparative genomic study revealed a ratio of

1.4–1.6 putative poplar homologs for each Arabidopsis

gene [49], it was hypothesized that CDPK genes in Populus

would be a large multi-gene family as 34 CDPK genes

were identified in Arabidopsis [9, 13]. However, according

to the present study, the number of Populus CDPK genes

was even smaller than that of Arabidopsis, which was also

the case for rice and wheat CDPK gene families. What’s

more, only less than half of the Arabidopsis CDPK genes

Table 2 CDPK closely related gene families in Populus

Gene

symbol

Gene model (V2.1) Gene model (V1.1) Arabidopsis
orthologue

locus

Score E-value No.

of EF

hands

N-Myrist N-Palmit M.W.

(kDa)

PtCRK1 POPTR_0006s03890.1 estExt_fgenesh4_pg.C_LG_VI0324 At2g41140.1 872 0.0 Y Y 63.2

PtCRK2 POPTR_0016s03470.1 estExt_Genewise1_v1.C_LG_XVI1225 At2g41140.1 934 0.0 Y Y 64.7

PtCRK3 POPTR_0009s10880.1 fgenesh4_pm.C_LG_IX000297 At3g19100.1 804 0.0 Y Y 66.5

PtCRK4 POPTR_0002s17720.1 fgenesh4_pm.C_LG_II000819 At2g46700.1 693 0.0 Y Y 67.6

PtCRK5 POPTR_0014s09920.1 eugene3.00140489 At2g46700.1 689 0.0 Y Y 67.6

PtCRK6 POPTR_0012s03040.1 fgenesh4_pg.C_LG_XII000275 At5g24430.1 765 0.0 N N 59.7

PtCRK7 POPTR_0005s14250.1 fgenesh4_pg.C_LG_V000496 At3g50530.2 898 0.0 Y Y 67.6

PtCRK8 POPTR_0007s11320.1 fgenesh4_pm.C_LG_VII000349 At3g50530.2 899 0.0 Y Y 67.5

PtCRK9 POPTR_0004s15110.1 eugene3.01300040 At1g49580.1 863 0.0 Y Y 67.3

PtPPCK1 POPTR_0019s03480.1 eugene3.00190185 At1g08650.1 353 9e-098 N Y 31.1

PtPPCK2 POPTR_0013s04320.1 fgenesh4_pg.C_LG_XIII000226 At1g08650.1 338 4e-093 N Y 30.9

PtPPCK3 POPTR_0010s08220.1 gw1.273.33.1 At1g08650.1 305 4e-083 N N 30.7

PtPEPRK1 POPTR_0003s12080.1 N.A At1g12580.1 600 e-171 N N 57.3

PtPEPRK1 POPTR_0003s12080.2 N.A At1g12580.1 600 e-171 N N 52.6

PtPEPRK2 POPTR_0012s13820.1 estExt_Genewise1_v1.C_LG_XII0412 At1g12580.1 583 e-166 N N 57.6

PtPEPRK3 POPTR_0015s13790.1 N.A At1g12580.1 597 e-171 N N 57.8

PtPEPRK3 POPTR_0015s13790.2 N.A At1g12580.1 597 e-171 N N 57.8

PtPEPRK4 POPTR_0005s27290.1 N.A At1g12680.1 653 0.0 N N 51.2

PtPEPRK5 POPTR_0007s03570.1 gw1.VII.1272.1 At1g12680.1 489 e-138 N N 51.9

PtPEPRK6 POPTR_0017s07570.1 gw1.XVII.263.1 At1g12680.1 489 e-138 N N 51.7

PtCCaMK1 POPTR_0008s01210.1 N.A 528 e-150 2 N N 43.7

PtCCaMK2 POPTR_0010s25360.1 N.A 422 e-118 1 N N 44.6
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had their Populus homologs. In contrast, generally two or

more Populus homologs were found for each Arabidopsis

CDPK gene (Table 1). It can be hypothesized that

approximately 30 CDPK genes would be sufficient for

plants to mediate Ca2? signals [29] and a subset of CDPK

genes might have lost during the evolutionary process due

to the functional redundancy.

The Populus CDPKs identified in our study ranged in

molecular masses from 48.4 to 68.5 kDa and all of them

possessed the typical CDPK structure, including a N-vari-

able domain, a protein kinase domain, an autoinhibitory

domain and a CaM-like domain. In addition, all Populus

CDPKs, except for PtCDPK9, PtCDPK12 and PtCDPK15,

were predicted to have four EF-hand motifs in the CaM-

like domain. However, both PtCDPK9 and one alternative

splicing of PtCDPK12 contained three EF-hand motifs and

PtCDPK15 had only one (Table 1). The EF-hand motifs

differed in the Ca2?-binding affinities and subsequently in

the contribution to Ca2?-regulated kinase activities, among

which the N-terminal EF1- and EF2- motifs with lower

Ca2?-binding affinities played a more important role in

activating the kinases. Besides, the Ca2?-binding affinities

could also participate in the CDPK targeting process by

affecting the access of substrate proteins [50, 51].

The N-terminus of a subset of CDPK proteins contained

myristoylation motif, which was supposed to promote

protein-membrane and protein–protein interactions [52].

Studies in Arabidopsis and wheat have revealed that pro-

teins possessed myristoylation motifs tend to localized in

plasma membrane [29, 53]. In addition, palmitoylation, as

a second lipid modification, could assist in stabilizing the

membrane interaction [54] In our study, fourteen of the

Populus CDPKs were predicted to possess myristoylation

motifs at the N-terminus, and all of them, except for

PtCDPK1 and PtCDPK4, possessed at least one palmi-

toylation site (Table 1). However, their subcellular locali-

zation needed to be characterized experimentally.

Protein kinases closely related to the CDPKs in Populus

Previous studies revealed that CRKs, PEPRKs, PPCKs and

CCaMKs were protein kinases closely related to CDPKs

[9, 27]. Using a similar method applied in the identification
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of CDPK genes, we identified nine CRKs, six PEPRKs,

three PPCKs and two CCaMKs in Populus.

The CRKs shared most similar structures with the

CDPKs except for the degenerated calmodulin-like

domains [55]. Thus, compared to the CDPKs, CRKs might

be consistently active, which was supported by certain

biochemical studies [9, 56]. The Populus CRKs ranged in

molecular masses from 59.7 to 67.6 kDa (Table 2), which

were comparable with CRKs from other plant species [9,

27]. Moreover, in consistent with previous findings that

most CRKs were N-terminus modified [9, 27], all Populus

CRKs except PtCRK6 possessed both potential myris-

toylation and palmitoylation sites at their N-terminus

(Table 2). Unlike CRKs, PPCKs are calcium-independent

protein kinases containing only catalytic domains, and

hence they are among the smallest ATP-dependent proteins

and the enzyme activities appear to be consistent [9]. The

molecular masses of Populus PPCKs ranged from 30.7 to

31.1 kDa (Table 2), which were smaller than the Arabid-

opsis PPCKs’ [9]. The catalytic domains of PEPRKs are

most closely related to PPCKs and usually possess both

N-terminal and C-terminal extensions. With no apparent

regulatory domain existed, PEPRKs are also supposed to

be consistently active [9]. The PEPRKs identified in our

study ranged in molecular masses from 51.2 to 57.8 kDa

(Table 2), specifically, alternative splicing sites were found

at both C-terminal extension of PtPEPRK1 and 50

untranslated region of PtPEPRK3. Although not found in

Arabidopsis [9], CCaMKs have been identified in several

plant species including tobacco, lily, legume and rice [27,

30, 57, 58]. The structure of CCaMKs is similar with the

CDPKs except for the Ca2?-binding domain, which usually

contains three EF-hand motifs and is more similar with

visinin rather than calmodulin [9]. Previous research

showed that they could be regulated by both Ca2? and

calmodulin [59]. In the present study, we identified two

putative CCaMKs in Populus. Interestingly, both of them

possessed truncated C-terminus which contained either one

or two EF-hand motifs (Table 2). As a result, compared to

Table 3 The distribution of CDPKs in Arabidopsis, Populus, rice

and wheat

Arabidopsis
thaliana

Populus
trichocarpa

Oryza
sativa

Triticum
aestivum

Group I 10 11 11 4

Group II-a 10 4 2 2

Group II-b 3 4 6 2

Group III-a 1 1 3 0

Group III-b 7 8 5 5

Group IV 3 2 2 1

Table 4 The Ka/Ks ratios and

estimated divergence time for

paralogous PtCDPK and its

closely related proteins

Paralogous pairs Identities (%) Ka Ks Ka/Ks Duplication

date (MY)

PtCDPK PtCDPK1/4 85 0.0646 0.256 0.2524 14.07

PtCDPK2/3 93 0.0344 0.2959 0.1164 16.26

PtCDPK5/6 93 0.0239 0.1908 0.1254 10.48

PtCDPK7/12 91 0.0392 0.2082 0.1884 11.44

PtCDPK8/9 89 0.0312 0.192 0.1625 10.55

PtCDPK10/11 93 0.0317 0.2055 0.1543 11.29

PtCDPK14/15 74 0.0584 0.2842 0.2054 15.62

PtCDPK16/17 90 0.0454 0.2178 0.2084 11.97

PtCDPK18/19 88 0.0557 0.2883 0.1934 15.84

PtCDPK21/22 93 0.0305 0.1859 0.1642 10.21

PtCDPK23/24 81 0.0792 0.4042 0.1959 22.21

PtCDPK25/26 93 0.0277 0.1816 0.1525 9.98

PtCDPK27/28 91 0.0413 0.18 0.2293 9.89

PtCDPK29/30 92 0.0186 0.147 0.1262 8.08

PtCRK PtCRK1/2 90 0.0345 0.239 0.1441 13.13

PtCRK3/9 86 0.0698 0.2274 0.3067 12.49

PtCRK4/5 91 0.0402 0.2644 0.152 14.53

PtCRK7/8 90 0.0514 0.2401 0.2142 13.19

PtPPCK PtPPCK1/2 85 0.0636 0.3278 0.194 18.01

PtPEPRK PtPEPRK2/3 89 0.0543 0.2299 0.2362 12.63

PtPEPRK5/6 90 0.0485 0.2367 0.2049 13.01

PtCCaMK PtCCaMK1/2 93 0.0996 0.2979 0.3344 16.37
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the molecular masses of CCaMKs from other plant species

(around 57 kDa) [27, 30, 57, 58], the molecular masses of

PtCCaMKs (43.7 and 44.6 kDa) was much smaller

(Table 2).

Phylogenetic analysis of CDPK and its closely related

gene families

To examine the phylogenetic relationship among the

CDPKs and its closely related protein kinases in Populus,

Arabidopsis, rice and wheat, an unrooted tree was con-

structed from alignments of the full-length kinase sequen-

ces using method by MEGA5.0, and bootstrap value was

tested with 1,000 replicates for statistical reliability. As

shown in Fig. 1, the phylogenetic tree formed eight groups:

CDPK I–IV, CRKs, PPCKs, PEPRKs and CCaMKs, both

CDPKII and CDPKIII could be further divided into two

subgroups. The distribution of CDPKs from the four spe-

cies was shown in Table 3.

In the CDPK family, CDPK I genes consisted of the

largest subfamilies in Populus and rice. However, in Ara-

bidopsis, the number of CDPK I genes was smaller than

that of CDPK II genes, which could mainly due to the

expansion of one Arabidopsis-specific branch in subgroup

CDPK II-a. In group CDPK III and CDPK IV individually,

the number of genes were approximately identical across

different species investigated, among which, the CDPK IV

comprised the fewest members of the four groups

(Table 3). The CDPK related kinase genes were compre-

hensively investigated across three species (Arabidopsis,
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Fig. 2 Chromosomal locations and segmental duplication events of

Populus CDPK and its closely related genes. The schematic diagram

of genome-wide chromosome organization arisen from the salicoid

genome duplication event in Populus was accomplished based on

duplication coordinates from the Populus genome assembly v2.1.

Segmental duplicated blocks are indicated with the same colors. The

duplicated paralogous pairs of PtCDPK and its closely related genes

are connected with solid lines. Genes located outside the duplicated

blocks are connected by dashed lines. Scale represents a 5 Mb

chromosomal distance
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Populus and rice) except for the PPCKs from rice. Of

which, the CCaMK members appeared to be lost during the

evolution process of Arabidopsis, while the PEPRKs

members from Populus were significantly expanded. In the

other two CDPK related groups (CRKs and PEPRKs), the

amount of genes from three species was roughly compa-

rable. In general, as the CDPKs and its closely related

kinases exhibited an interspersed distribution in each sub-

group, it could be inferred that an ancestral set of the

CDPK and its closely related kinase genes already existed

before the monocot-eudicot divergence.

In addition, inspection of the phylogenetic tree revealed

14 PtCDPK paralogous gene pairs, four PtCRK paralogous

gene pairs, one PtPPCK paralogous gene pair, two PtPEPRK
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Fig. 3 Phylogenetic relationship and gene structure of Populus
CDPK and its closely related genes. The phylogenetic tree was

constructed using full-length protein sequences by the Neighbor-

Joining (NJ) method with 1,000 bootstrap replicates. The four

PtCDPK phylogenetic subfamilies designated as I–IV as well as other

four closely related families are marked with different color
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proportional to their sequence lengths. (Color figure online)
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paralogous gene pairs and one PtCCaMK paralogous gene

pair, with sequence identities ranging from 74.24 to 93.32 %

(Table 4). Notably, the proportion (93.3 %) of paralogous

gene pairs in Populus CDPK gene family was quite high,

which was similar to the Populus HD-ZIP gene family [60],

but much higher than NAC (60.1 %) [61] and GST (69.1 %)

gene families [62]. This phenomenon might suggest that the

CDPK gene family in Populus may have undergone multiple

duplications during the evolution history.

Chromosomal location and gene duplication

Mapping of the CDPK gene location revealed that 29 of the

30 CDPK genes were distributed among 15 of the 19

Populus linkage groups (LG), while only one gene

PtCDPK19 was remained on yet unmapped scaffold. The

distributed of the PtCDPK genes across the LGs appeared

to be uneven: both LGVI and LGXVI encompassed the

largest number of four PtCDPK genes, in contrast, no

PtCDPK genes was found on LGXI, LGXIV, LGXVII and

LGXVIII (Fig. 2).

Previous studies revealed that Populus genome had

undergone at least three rounds of genome-wide duplica-

tions followed by multiple segmental duplication, tandem

duplication, and transposition events such as retroposition

and replicative transpositions [49]. Among them, the seg-

mental duplication associated with the salicoid duplication

event that occurred 65 million years ago remarkably con-

tributed to the expansion of many multi-gene families [41,

60, 61, 63–66]. To determine the possible evolutionary

relationship between the PtCDPK genes and potential

segmental duplications, Populus CDPK along with the

closely related kinase genes were mapped to the 163

recently identified duplicated blocks. The distribution of
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Fig. 4 Splicing sites of the

Populus CDPK and its closely

related genes. Introns locations

relative the protein sequences

are shown by triangles. A green
triangle indicates the alternative

splicing site in PtPEPRK1. Blue
boxes protein kinase domains,

black boxes autoinhibitory

domains, gray boxes
calmodulin-like domains,

yellow boxes EF hand motifs,

orange box visinin-like domain,

dark-blue boxes autoinhibitory

domains overlap with

calmodulin-binding domains,
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I–XI subdomains of the protein

kinase domain. (Color figure

online)
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the genes relative to the corresponding duplicated blocks

was illustrated in Fig. 2.

Of the 29 mapped PtCDPK genes, 90 % (26/29) were

located within the duplicated regions while only

PtCDPK18, PtCDPK21 and PtCDPK22 were located out-

side of any duplicated blocks. Within the identified dupli-

cated blocks associated with the recent salicoid duplication

event, 80 % (24/30) of the Populus CDPK genes were

preferentially retained duplicates that located in both

duplicated regions. In contrast, two duplicated blocks only

contained PtCDPK genes (PtCDPK13 and PtCDPK20) on

one of the blocks and lacked duplicates on the corre-

sponding block, suggesting that dynamic rearrangement

might have occurred following the segmental duplication

which led to the loss of a subset of genes.

PtCDPK1/4 and PtCDPK16/17 were two of the para-

logous gene pairs identified in the present study. Interest-

ingly, PtCDPK1 and PtCDPK16, together with PtCDPK4

and PtCDPK17, were found within a distance of less than

9 kb on the duplication blocks with both identities higher

than 60 % which could also be considered as tandem

duplications. This arrangement, along with the closely

related location in the phylogenetic tree, suggested that the

two paralogous gene pairs (PtCDPK1/4 and PtCDPK16/

17) might originate from a common ancestor which firstly

underwent tandem duplication prior to the segmental

duplication.

Based on the genomic organization of PtCDPK genes,

we may conclude that segmental duplications significantly

contributed to the expansion of Populus CDPK gene

family, which were also observed in other multi-gene

families in Populus [41, 60, 61, 63–67]. In addition, our

results indicated that Populus CDPK genes had been

preferentially retained at a relatively high rate of 80 %,

which was much higher than the average rate (33 %) fol-

lowing the salicoid genome-wide duplication in the Pop-

ulus lineage [49]. The high retention rates of duplicated

genes were also observed in other gene families of Populus

[63, 65, 67]. These findings also corroborated previous

results that genes involved in transcription regulations and

signal transductions were preferentially retained following

duplications [68–70].
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Fig. 5 Expression profiles of Populus CDPK and its closely related

genes across different tissues. Background corrected expression

intensities were log-transformed and visualized as heatmaps (see

Materials and Methods). The Affymetrix microarray data were

obtained from NCBI Gene Expression Omnibus (GEO) database

under the series accession number GSE13990. CL continuous light-

grown seedling, DL etiolated dark-grown seedling transferred to light

for 3 h, DS dark-grown seedlings, YL young leaf, ML mature leaf,

R root, DX differentiating xylem, FC female catkins, MC male catkins
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Analysis of paralogous PtCDPK gene pairs demonstrated

that 12 out of 14 gene pairs retained in conserved positions on

the segmental duplicated blocks (Fig. 2), suggesting that

these 12 paralogous pairs might derive from segmental

duplications. While no traceable duplication event could be

inferred for two paralogous pairs (PtCDPK18/19 and

PtCDPK21/22), PtCDPK18 was located outside of any

duplicated regions with its counterpart (PtCDPK19) not

mapped on LGs yet, and neither PtCDPK21 nor PtCDPK22

was located on the duplicated blocks (Fig. 2).

All PtCDPK closely related kinase genes were located

within the duplicated blocks (Fig. 2). Furthermore, all of
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the eight paralogous pairs (80 % of the identified genes)

were retained duplicates that located in both duplicated

blocks. Although none of the rest four genes had paralogous

counterpart, they also located within the duplicated blocks,

which suggested dynamic rearrangements may have occur-

red after the segmental duplication. The above results indi-

cated that the expansion of the PtCDPK closely related gene

families also originated from segmental duplications.

The substitution rate ratio of nonsynonymous (dN or

Ka) versus synonymous (dS or Ks) is an indicator of

selection history on genes or gene regions. Generally,

Ka/Ks\1 indicates the functional constraint with negative

or purifying selection of the genes, Ka/Ks[1 means accel-

erated evolution with positive selection, and Ka/Ks = 1

suggests neutral selection [71]. In this study, the Ka/Ks

ratio of 22 putative paralogous gene pairs identified were

calculated to reveal the divergence fate after duplication of

Populus CDPK and its closely related genes. As the results

showed that the Ka/Ks ratios of all paralogous pairs were

no larger than 0.4 (Table 4), we could conclude the Pop-

ulus CDPK and its closely related gene families had

undergone great purifying selection pressure with limited

functional divergence after segmental duplications. In

addition, based on the divergence rate of 9.1 9 10-9 syn-

onymous mutations per synonymous site year proposed for

Populus [38], duplications of the paralogous gene pairs

were estimated to occur between 8.08 and 22.21 million

years (MY) ago (Table 4).

Structures of the Populus CDPK and its closely

related genes

In order to gain further insight into the structural diversity

of Populus CDPK genes, we constructed a separate phy-

logenetic tree exclusively using the full-length Populus

CDPK protein sequences and compared the exon/intron

organization in the coding sequences of each Populus

CDPK genes (Fig. 3). In addition, the splicing sites were

also mapped to the open reading frame (ORF) of the

Populus CDPKs (Fig. 4).

As indicated in Figs. 3 and 4, most Populus CDPK

members within the same subfamilies shared vary similar

gene structures in terms of intron numbers and exon lengths,

and although the length varied, introns inserted into nearly

the same locations of the gene ORF. All members from

subgroup I possessed six introns, and most shared the same

intron/exon organization except for three genes (PtCDPK2,

PtCDPK3 and PtCDPK9) (Fig. 3). The first introns of the

two paralogous genes, PtCDPK2 and PtCDPK3, were both

shifted to the location between subdomain IV and V instead

of subdomain VII and VIII, and the CaM-like domain of

PtCDPK9 appeared to be truncated and lost one EF-hand

motif (Fig. 4). Five members of subgroup II (PtCDPK18,

PtCDPK19, PtCDPK23, PtCDPK24 and PtCDPK30)

shared the similar splicing patterns with seven introns,

whereas the other three (PtCDPK5, PtCDPK6 and

PtCDPK29), which all belonged to subgroup II-b, had one

additional splicing site between subdomain III and IV or at

the N-variable domain (Fig. 4). In subgroup III, the splicing

patterns of five genes (PtCDPK10, PtCDPK11, PtCDPK20,

PtCDPK27 and PtCDPK28) were largely identical with

seven introns. All of the remaining four genes (PtCDPK14,

PtCDPK15, PtCDPK25 and PtCDPK26) lacked the first

intron inserted between subdomain VIa and VIb, further-

more, PtCDPK15 also had a truncated C-terminus leading

to the losing of another intron (Fig. 4).

Unlike subgroup I, II and III, which shared gene struc-

tures largely in agreement, the splicing sites of two genes

(PtCDPK21 and PtCDPK22) in subgroup IV were largely

in line with the PtCRKs rather than other PtCDPK mem-

bers. What’s more, subgroup IV was located on a branch

most closely related to the PtCRKs in the phylogenetic

tree. Thus, according to the above results, and along with

the degenerated EF-hand motifs in the PtCRKs, we could

infer that PtCDPKs of the subgroup IV and the PtCRKs

were originated from a common ancestor comparatively

recently, which was also proposed in Arabidopsis and rice

[9, 27]. Conversely, the gene structures of the other Pop-

ulus CDPK closely related kinases showed relatively lower

Fig. 6 Differential expression of Populus CDPK and its closely

related genes under different stresses. Expression is indicated as fold-

change of experimental treatments relative to control samples and

visualized in heatmaps (see Materials and Methods). Color scale
represents log2 expression values, yellow represents low level and

blue indicates high level of transcript abundances. a Heatmap

showing hierarchical clustering of Populus CDPK and its closely

related genes under short-term and long-term water deficit in root tips.

Microarray data under the series accession number GSE17223 was

obtained from NCBI GEO database. EAR early response (EAR) to

water deficit by 36 h; LMI, long-term (10-day) response to mild stress

with soil relative extractable water (REW) at 20–35 %; LMO long-

term (10-day) response to moderate stress with soil relative extract-

able water (REW) at 10–20 %. b Heatmap showing hierarchical

clustering of Populus CDPK and its closely related genes under

fungal infection in leaves. Microarray data under the series accession

number GSE9673 was obtained from NCBI GEO database. MLP
Populus leaves infected with Melampsora larici-populina; MMD
Populus leaves infected with Melampsora medusae f. sp. Deltoidae,

MIX Populus leaves infected with mixture of the two fungal species.

c Heatmap showing hierarchical clustering of Populus CDPK and its

closely related genes across various tissues and genotypes analyzed.

Microarray data under the series accession number GSE16786 was

obtained from NCBI GEO database. Genotypes analyzed included: P.
fremontii 9 angustifolia clones 1979, 3200, and RM5, P. tremuloides
clones 271 and L4, and Populus deltoids clones Soligo and Carpaccio.

Tissues analyzed included: YL young leaves, EL expanding leaves,

ML mature leaves, RT root tips, C suspension cell cultures. Stress

treatments included: low N nitrogen limitation, MeJ methyl jasmonate

elicitation; wounding, sampled either 1 week or 90 h after wounding.

(Color figure online)

b
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degree of similarities with the Populus CDPKs (Figs. 3, 4),

suggesting they could diverged a long time ago.

Expression profiles of Populus CDPK and its closely

related kinase genes

Whole genome microarray is considered as a useful tool of

studying gene expression profiles in Populus [60, 61, 63].

To gain insight into the expression profiles of Populus

CDPK genes in different tissues, we reanalyzed the Pop-

ulus microarray data generated by Wilkins and coworkers

[41] (Fig. 5). Three (PtCDPK1, PtCDPK8 and PtCDPK15)

of the 30 Populus CDPK genes did not have the corre-

sponding probe sets in the dataset (Table S1). Of the 27

Populus CDPK genes whose expression profiles were fur-

ther analyzed, 13 showed preferentially high expression

level in root and/or differentiating xylem, 13 in female and

male catkins, and only one in young leaf (Fig. 5). The

genes closely related to the Populus CDPK genes were also

investigated for their expression patterns across various

tissues. The results demonstrated that the PtCCaMKs were

preferentially expressed in root and the PtPPCKs had the

highest transcription abundance in differentiating xylem,

whereas, the PtCRKs and the PtPEPRKs showed relatively

diversified expression profiles (Fig. 5).

To further investigate the response of Populus CDPK

and its closely related genes to biotic and abiotic stresses,

we examined their expression patterns under fungal

infection, low nitrogen limitation, mechanical wounding,

drought and methyl jasmonate (MeJ) treatment (Fig. 6).

Fungal infection caused up-regulation of 7 PtCDPK genes

and down-regulation of 6 PtCDPK genes. Among them,

PtCDPK4 showed a remarkably high expression level

under all three infection treatments, suggesting a high

probability for it to participate in the anti-fungal signal

transduction pathway. Further analysis of the PtCDPK

closely related genes also revealed six up-regulated genes

and six down-regulated genes. Interestingly, a few genes

such as PtCRK1 seem to have different expression profiles

under different pathogen infections (Fig. 6a). The respon-

ses of Populus CDPK genes to nitrogen deficit stress differ

between two Populus genotypes examined. For instance,

PtCDPK21 and PtCDPK22 were significantly induced at all

three tissues examined in genotype 1979, which was not the

case in genotype 3200. However, among the PtCDPK clo-

sely related genes, PtPPCK1 and PtPPCK2 were generally

up-regulated across all tissues examined in both genotypes

(Fig. 6b). Mechanical wounding induced up-regulation of

six PtCDPK genes (PtCDPK18, PtCDPK19, PtCDPK21,

PtCDPK22, PtCDPK25 and PtCDPK26) and down-regula-

tion of eight PtCDPK genes (PtCDPK2, PtCDPK7,

PtCDPK12, PtCDPK17, PtCDPK23, PtCDPK28, PtCD

PK29 and PtCDPK30) in young leaves 1 week after wound-

ing as well as expanded leaves 90 h after wounding. Inter-

estingly, gene expression profiles in expanded leaves one

week after wounding were distinctively different, which

revealed one significantly up-regulated gene (PtCDPK14) and

four significantly down-regulated genes (PtCDPK4, PtCD

PK18, PtCDPK21 and PtCDPK22). In root tips, four up-

regulated PtCDPK genes (PtCDPK4, PtCDPK21, PtCDP

K22 and PtCDPK28) and five down-regulated genes (PtCD

PK2, PtCDPK3, PtCDPK14, PtCDPK17 and PtCDPK20)

were also identified 90 h after mechanical wounding. Anal-

ysis of the PtCDPK closely related genes proposed two

sharply down-regulated genes (PtPPCK1 and PtPPCK2) in

young and expanded leaves 1 week after wounding and two

up-regulated genes (PtCRK5 and PtCRK9) in expanded leaves

90 h after wounding. In root tips, both PtCCaMK genes

(PtCCaMK1 and PtCCaMK2) appeared to be up-regulated

90 h after wounding (Fig. 6b). In response to MeJ feeding in

cell culture, two PtCDPK genes, PtCDPK2 and PtCDPK16,

were shown to be significantly up-regulated, whereas PtCD

PK28 was obviously down-regulated. In addition, analysis of

the PtCDPK closely related genes proposed two sharply up-

regulated genes (PtCRK1 and PtPPCK1) and one down-reg-

ulated gene (PtCRK9) (Fig. 6b).

Water-deficit is a primary environment stress that most

land plants would encounter during life spans. As quite a

subset of CDPK genes identified in various plant species

had been proven to play crucial roles in drought stress

response, we further investigated the expression profiles of

Populus CDPK genes under water-deficit conditions by

examining two Affymetrix microarray datasets (GSE17223

and GSE17230) [43] (Fig. 6c). Under drought stress, most

PtCDPK and its closely related genes showed more sig-

nificant and organized expression profiles in root tips than

in mature leaves, which was consistent with the global

expression changes of the drought-driven genes in Populus

[43]. Thus the microarray dataset GSE17223 in which gene

expression profiles in root tips of two Populus genotypes

(Carpaccio and Soligo) under water-deficit conditions was

further analyzed. According to the dataset, two genes

(PtCDPK27 and PtCDPK28) were up-regulated and one

gene (PtCDPK10) was down-regulated uniformly in both

genotypes across all drought condition tested which

included an early response (EAR) to water deficiency by

36 h and long-term (10-day) response to mild stress (LMI)

and moderate stress (LMO). What’s more, the transcription

abundance of a subset of PtCDPKs was only altered in one

separate genotype or under certain water-deficit conditions.

For instance, PtCDPK18 showed up-regulation of tran-

scription abundance in the genotype ‘‘Carpaccio’’ rather

than ‘‘Soligo’’, whereas PtCDPK13 was significantly down

regulated across all conditions in ‘‘Soligo’’ but only under

EAR condition in ‘‘Carpaccio’’ (Fig. 6c). Analysis of the
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PtCDPK closely related genes also revealed that two genes

(PtCRK1 and PtPPCK2) were up-regulated in both geno-

types and across all conditions. Notably, in both genotypes,

PtCRK3 was up-regulated under EAR but down-regulated

dramatically under LMI, which suggested a term-based

response mode to water-deficiency stress (Fig. 6c).

Duplicated genes might undergo different evolution fates

including nonfunctionalization, neofunctionalization and

subfunctionalization, which could be demonstrated by the

divergence of the gene expression profiles [72]. Of the 22

PtCDPK and its closely related paralogous gene pairs, ten

pairs were either lack of corresponding probe sets, shared

same probe sets, or located outside of any of the duplicated

blocks. As a result, 12 paralogous pairs remained to be further

analyzed. Among them, four paralogous pairs (PtCDPK2/3,

PtCDPK16/17, PtCDPK23/24 and PtCCaMK1/2) shared

almost the same expression profiles with respect to various

tissues and stresses. On the contrary, the expression pattern of

three paralogous pairs (PtCRK1/2, PtCRK3/9 and PtCRK7/8)

diverged dramatically, suggesting substantial neofunction-

alization during subsequent evolution process. The rest of the

duplicated genes demonstrated partially redundant expres-

sion pattern with distinct shifts, which indicated that they

might have undergone subfunctionalization. These findings

above suggested that the expression patterns of the PtCDPK

and its closely related genes had diversified substantially,

which might due to the different divergent fates after seg-

mental duplications.
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Fig. 7 Expression analysis of nine selected PtCDPK genes under

drought stresses using qRT-PCR. The relative mRNA abundance of

nine selected PtCDPK genes was normalized with respect to

reference genes UBQ10 in drought stress treatments. Two biological

replicates each with three technique replicates were performed and

bars represent standard deviations (SD) of the replicates. X-axis is

time courses of stress treatments for each gene. Stress treatment

groups showed significant difference in transcript abundance com-

pared to the control group were indicated with asterisks, with single
or double asterisks indicating a significant difference of P \ 0.05 or

P \ 0.01 between controls and treatments respectively
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Examination of Populus CDPK gene expression

profiles under drought stress by qRT-PCR

In order to verify the expression profiles of putative

drought-responsive Populus CDPK genes which were

speculated by the microarray analysis or orthologous to the

previously identified Arabidopsis CDPK genes, qRT-PCR

analysis was performed for nine selected PtCDPK genes

including four paralogous pairs in Populus root tips under

drought stresses (Fig. 7).

PtCDPK8 and PtCDPK9 were orthologous to Arabid-

opsis AtCPK6 which had been proven to be involved in

both drought and salinity stresses [26]. Notably, although

PtCDPK9 was significantly induced after dehydration

stress, the transcription abundance of PtCDPK8 decreased

gradually and reached its lowest point 6 h after treatment,

suggesting their function may have been diversified during

subsequent evolution process. PtCDPK18 and PtCDPK19,

the orthologous to Arabidopsis AtCPK21 involved in abi-

otic stress responses [51], showed up-regulation under

drought stress according to the microarray analysis. This

paralogous gene pair were both up regulated following

dehydration treatments although they reached the highest

transcription abundance at different time points (3 or 6 h

after treatment). In consistent with the microarray analysis,

two paralogous pairs, PtCDPK21/22 and PtCDPK27/28,

together with PtCDPK12 which was orthologous to Ara-

bidopsis AtCDPK2/CPK11 involved in ABA-related

drought and salinity stress responses [23, 73], were all

induced after dehydration treatments (Fig. 7).

Taken together, although different Populus genotype

(Populus deltoides) were used, the gene expression patterns

detected by qRT-PCR were largely consistent with the

results of the microarray analysis. Furthermore, all Populus

CDPK genes except PtCDPK18 characterized by qRT-

PCR had either highest or lowest transcription abundance

in root tips 6 h after dehydration treatments. Therefore, we

attempted to speculate that 6 h after environmental changes

was the time point at which the Populus drought-respon-

sive calcium-dependent signal pathway reached its maxi-

mum activity.
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