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Although first introduced as early as the 1800s1, electric vehi-
cles (EVs) have only begun to be widely adopted since the 
start of the present decade. Global EV sales have escalated 

from less than 10,000 in 2010 to 774,000 in 2016, surpassing 2 mil-
lion cumulative sales2. Vehicle electrification is now seen as the 
main decarbonization pathway for nearly all road-based transpor-
tation3. Worsening urban air quality has also led several countries 
to announce intentions to ban sales of internal combustion engine 
vehicles (ICEVs)4, which will need to be replaced by EVs.

The growing success of EVs can be attributed, from a technologi-
cal perspective, to advances in electrochemical energy storage tech-
nology. The specific energy of lithium-ion (Li-ion) batteries, which 
increased from approximately 90 Wh kg–1

cell in the 1990s to over 250 
Wh kg–1

cell today5,6, has allowed full-size automobiles to travel suf-
ficient distances for typical driving patterns7. Meanwhile, the cost 
of Li-ion battery packs has decreased from over 1,000 US$ kWh–1 to 
about 250 US$ kWh–1 (refs 5,8–11), allowing EV prices to fall to a price 
that early adopters are willing to pay.

Figure 1 shows the evolution of cumulative EV sales and EV 
market share that is needed to conform to the International Energy 
Agency (IEA)’s scenario3 for limiting global temperature increase to 
1.75 °C. Referred to as the Beyond 2 Degrees Scenario (B2DS), this 
pathway calls for cumulative EV sales of 1.8 billion and an EV mar-
ket share of 86% by 2060. The inset within Fig. 1, displaying cumu-
lative vehicle sales of about 2 million and a market share of 0.2% in 
2016, demonstrates the extremely early stage of current global EV 
adoption and the large amount of future adoption that is needed. 
EV adoption has so far been heavily dictated by government policy 
instruments, such as financial incentives, sales mandates and free 
vehicle charging12,13. Although these policies are likely to spur fur-
ther adoption, it could become financially unsustainable or undesir-
able to scale them up to the level needed to reach the market share 
prescribed in Fig. 1. Moreover, it is not certain that EVs powered by 
Li-ion batteries will be suitable for every vehicle market, owing to 

inherent limits in their energy storage capacity, safety and achiev-
able cost. Alternative technologies that can power EV drivetrains 
are therefore an important focus.

Here, we evaluate the potential of batteries and hydrogen fuel 
cells for improving the performance and reducing the cost of EVs. 
We first outline three automotive markets that have not seen much 
penetration by Li-ion powered EVs, and we discuss the energy 
characteristics that require improvement for EVs to succeed in 
these markets. Then, we compare and evaluate the properties of five 
battery types that are commonly discussed as candidates to power 
new EVs. Finally, we provide a brief status review of each battery, 
in addition to hydrogen fuel cells, and discuss the potential of each 
technology in fulfilling requirements for emerging EV markets.

Energy storage barriers in emerging EV markets
Below, we outline the characteristics of energy storage technolo-
gies that require improvement to succeed in the areas of long-range 
transport, low-cost transport and high-utilization transport.

Long-range transport. Inadequate driving range, or ‘range anxiety’, 
is frequently reported as a key technological barrier preventing con-
sumers from purchasing EVs14,15. Longer EV ranges are particularly 
desired in the United States16, perhaps because of longer potential 
travel distances and less reliance on public transit than other devel-
oped regions17. Over half (54%) of US consumers in a 2016 survey 
required a range of at least 175 miles (282 km) to consider purchas-
ing an EV, and over a quarter (29%) required a range of 375 miles 
(604 km)14. When considering an EV that could reduce fuel costs by 
one-third, 52% of respondents were unwilling to spend more than 
US$5,000 above the price of a petrol- (gasoline)-powered vehicle, 
and 29% would not spend above a premium of US$1,000.

In Fig. 2, the driving ranges for EVs currently available in the 
US market are shown plotted against their price premium relative 
to average vehicle prices in the same size segment. Notably, each 
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EV costs at least US$5,000 more than the average vehicle price in 
its respective vehicle size class. Although other factors such as low 
manufacturing volumes and extra vehicle features may contribute 
to high prices, the positive correlation between EV range and price 
premium indicates the considerable cost contribution of the bat-
teries. A range-dependent willingness-to-pay model for US con-
sumers16 was used to expand the aforementioned consumer survey 
results into boundaries of requirement, in which 52–54% of US con-
sumers require an EV with a price premium and range below the 
upper requirement boundary, and 29% of US consumers require an 
EV with a price premium and range below the lower requirement 
boundary. This figure shows that without government incentives, 
none of the currently available EVs would satisfy the requirements 
of over 50% of US consumers.

Recent forecasts predict that the cost of Li-ion battery packs 
will fall to near 70 US$ kWh–1 by 2030 or 2040 as manufacturing 
efficiency is further improved9,18. If 2017 EV prices are adjusted 
to reflect this value, three models (Chevrolet Bolt, Hyundai Ioniq 
electric and Tesla Model 3) appear to pass the 50% US consumer 
requirement threshold (Fig. 2). However, EVs with these adjusted 
prices would remain far short of meeting the requisites of nearly 
30% of US consumers, and probably many other consumers in 
highly automobile-dependent countries. Even if energy storage 
costs are removed from the vehicle prices, none of the current EV 
models would provide a driving range that 30% of US consum-
ers would be willing to pay for. Therefore, substantially improv-
ing EV ranges without increasing cost seems to be the only way to 
satisfy the long-range transportation market. This requires vehicle 
weight to be reduced by increasing the specific energy (Wh kg–1) 
stored in the vehicle. With Li-ion batteries, however, substantially 
increasing the specific energy is likely to require metallic lithium 
anodes, increased cell voltages or reduced safety components, all of 
which may involve an unacceptable trade-off in safety19–21. Solid-
state Li-ion batteries are one of the most promising pathways for 
safely incorporating lithium metal and higher-voltage materials; 
cells reported so far, however, have either unacceptably low areal 
capacities (less than 1 mAh cm–2, which would translate to lower 
specific energy than state-of-the-art Li-ion batteries22) or unac-
ceptably low cycle life (20 cycles or less)23. Even a highly optimized 
Li-ion cell with a lithium metal anode may not practically surpass 

350 Wh l–1
cell (ref. 22). Consequently, alternative battery chemistries 

and energy storage technologies with higher specific energy, lower 
cost and improved safety are needed to enable electrification of the 
long-range transportation market.

Low-cost transport. The cost of EVs, as opposed to their range, is 
likely to be the primary concern for a large and increasing percent-
age of future vehicle owners. Figure 3 displays results of a discrete 
choice model fitted to vehicle registration data (for both EVs and 
conventional vehicles) from a selection of countries24. US consum-
ers were willing to pay an additional 21 US$ per additional kilo-
metre of range (21 US$ km–1), whereas consumers in emerging 
countries (China, India, Brazil and Indonesia) were only willing to 
pay an average of 8.4 US$ km–1. Figure 3 also displays the negative 
logit coefficient for vehicle price fitted to each country, which mea-
sures the degree to which a price increase reduces the probability  
that a consumer will purchase a vehicle24,25. The negative coefficient 
for emerging countries was, on average, significantly higher than 
that of the United States. China was the one exception, with a nega-
tive value indicating that a higher price surprisingly increased the 
probability of a vehicle purchase. Nevertheless, high Chinese sales 
figures for cheaper and smaller low-speed EVs, including two-
wheelers and three-wheelers, versus those for conventional EVs 
(over 200 million versus 0.6 million in total as of 201613) indicate the 
high market desire for low-cost transportation in China alongside 
India, Brazil and Indonesia.

EVs available in emerging markets such as China have a similar 
price premium to the developed countries26. The low-cost trans-
portation market, which is expected to grow quickly as emerging 
countries continue to industrialize, is thus underserved by current 
Li-ion-powered EVs. If the battery energy of the compact and sub-
compact cars in Fig. 2 are plotted against vehicle ranges, a slope of 
0.19 kWh km–1 (representing energy consumption per additional 
kilometre of range) is obtained. For emerging countries, the average 
willingness to pay (8.4 US$ km–1 as mentioned above) is divided by 
0.19 kWh km–1 to obtain a target for energy storage cost of approxi-
mately 45 US$ kWh–1. Development of an electrochemical storage 
technology costing below 45 US$ kWh–1 is therefore a worthwhile 
goal for enabling electrified transportation in emerging markets. 
Alternatively, technologies with a higher specific energy and similar 
cost to Li-ion batteries could also help this market by reducing the 
energy consumption value used in the above calculation.

High-utilization transport. Vehicles that experience higher uti-
lization—that is, the percentage of time they are in operation—
than consumer vehicles are a considerable contributor to climate 
change and poor air quality. For instance, road freight vehicles 
accounted for about a third of carbon dioxide emissions from the 
global transportation industry in 2015, and this share is increasing 
in industrialized countries as passenger vehicles become more fuel-
efficient27. Therefore, the unique challenges of transitioning to high-
utilization EVs for public transportation and goods transportation  
must be addressed.

High utilization has important implications for the requirements 
of the energy storage technology used in EVs. First, the capability 
for fast charging (for example, less than an hour) becomes a more 
important consideration, as the time required to charge the vehicle 
should not disrupt the operating schedule of the vehicle. Li-ion bat-
teries are capable of fast charging, and electric buses designed for 
quick partial recharging at bus stops have been deployed in several 
countries28; however, this can cause increased cell degradation and 
safety issues29–31. Simultaneous fast charging of several EVs can also 
put excessive stress on the components of power grids, thus neces-
sitating expensive upgrades32,33. Therefore, an important aspect to 
consider for high-utilization EVs is their ability to recharge quickly 
while smoothly integrating with power grids.
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Fig. 1 | Evolution of cumulative EV sales and EV market share prescribed 
in the IEA’s ‘Beyond 2 Degrees Scenario’. Cumulative EV sales up to 20162 
are shown in the inset. Battery, plug-in hybrid and hydrogen fuel-cell EVs 
are all included in these data. The scenario data are from ref. 22.
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Another key characteristic of many high-utilization vehicles such 
as trucks, buses and trains is their larger weight relative to personal 
transport vehicles. Li-ion battery packs must be proportionally 
scaled to larger sizes for these vehicles to travel an equivalent dis-
tance. But the lower surface-to-volume ratios of larger battery packs 
mean that heat dissipation is slower, often resulting in increased 
degradation and safety concerns, and the need for complex cooling 
techniques with expensive or toxic chemicals29. Therefore, energy 
storage and conversion technologies that have higher specific ener-
gies and safer characteristics (for example, non-flammable materials)  
are particularly attractive for high-utilization EVs.

Evaluation of electrochemical technology candidates
The previous section specified that increased specific energy or lower 
energy storage cost (in comparison to Li-ion batteries) is essential for 
EVs with longer driving ranges and lower cost, while fast charging, 
power grid compatibility and safe operation are crucial for high-uti-
lization EVs. Of course, Li-ion batteries possess several other char-
acteristics with which other electrochemical technologies need to 
compete. Characteristics of the technologies regarded as candidates 
for new EVs, in addition to those of Li-ion batteries, are compared in 
Fig. 4. Qualitative safety ratings were determined by the type of elec-
trolyte (flammable or non-flammable), potential for over-heating, 
and potential for toxic or corrosive material release. Fast-charging  
capability for each battery was rated semi-quantitatively from its spe-
cific power, while each battery’s power grid compatibility was rated 

semi-quantitatively from its energy efficiency. Hydrogen fuel cells 
have the highest fast-charging and power grid compatibility owing 
to the ability to transfer hydrogen gas quickly without disrupting 
power grids.

Note that the energy characteristics of hydrogen storage in Fig. 4 
(specific energy, energy density and energy storage cost) should not be 
directly compared with those of the various battery chemistries with-
out accounting for the mass, volume and cost of a coupled fuel-cell 
system. Unlike batteries, the total energy of a hydrogen fuel-cell com-
bination (that is, amount of stored hydrogen) can be increased sepa-
rately from the total power of the fuel cell. Because of this fundamental 
difference, hydrogen fuel cells are not included in the analysis below; 
they are evaluated relative to Li-ion batteries in a separate section.

Certain metrics for the batteries in Fig. 4, namely specific energy, 
energy density and energy storage cost, can be evaluated more prac-
tically by using them in approximating calculations of vehicle range 
(RV), total vehicle cost (CV,T) and battery pack volume (VolB). Each 
of these is a function of the battery pack energy (EB) and can be cal-
culated from equations (1)34, (2) and (3) respectively:
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where ECEV (Wh km–1 kg–1) is the energy consumption efficiency 
of the vehicle, MV(kg) and CV(US$) are the vehicle mass and 
vehicle cost not including the battery pack, CB(US$ kWh–1) is the 
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battery pack cost, SEBC(Wh kg–1) and EDBC(Wh l–1) are the specific  
energy and energy density of the battery cell, and km,B and kvol,B 
(unitless) are factors for the battery pack mass and volume over-
heads, respectively. The overhead factors assigned to each battery 
(Supplementary Table 2) reflect the level of safety equipment or air 
management equipment (for metal–air batteries) needed to operate 
each battery.

Results for a mini vehicle (common in markets that demand low-
cost vehicles), a mid-size vehicle (common in markets demanding 
long-range vehicles) and a semi-trailer truck (representing the high-
utilization market) are exhibited in Figs. 5a,b, 5c,d and 5e,f, respec-
tively. Data for the three vehicle types can be found in Supplementary 
Tables 1 and 2, and ref. 22. Vehicle cost as a function of driving range 
is plotted in Fig. 5a,c,e until the battery volume exceeds an assigned 
space limit within each vehicle. Because of the space limitations, 
the low energy densities of lead–acid (Pb–acid) and nickel–metal 
hydride (Ni–MH) batteries are clearly recognized as a large draw-
back. The potential for lithium–sulfur (Li–S), lithium–air (Li–air) 
and zinc–air (Zn–air) batteries to enable long-range EVs at a much 
lower cost than Li-ion batteries is also apparent. The cost of add-
ing greater range (US$ km–1), which may be compared with inves-
tigations of consumers’ willingness to pay for additional range16,24, 
is plotted against vehicle range in Fig. 5b,d,f. Figure 5b shows that 

Li–S, Li–air and Zn–air batteries can bring the cost of additional 
range of a mini vehicle substantially closer to the average willing-
ness-to-pay value for emerging countries identified in Fig. 3.

Figure 6 displays the approximate span of vehicle cost and range 
combinations that could be achieved for a mid-size vehicle using 
the upper and lower bounds of the energy and cost characteristics 
of each battery in Fig. 4. It can be seen here that Zn–air batteries 
have the potential to enable the longest-range EV, while Li–S bat-
teries could enable the lowest-cost EV. But this evaluation does not 
dictate whether each battery has sufficient power, cycle/calendar 
life, efficiency and self-discharge rate to function reliably in an EV. 
Therefore, Figs. 5 and 6 demonstrate only the basic potential of 
each battery chemistry to lower costs and increase driving ranges. 
Details of the practicality of implementing these technologies in 
consumer, commercial and public transportation applications are  
discussed below.

Commercial rechargeable batteries
We look first at two types of rechargeable battery currently in com-
mercial use and evaluate them as alternatives to Li-ion batteries.

Lead–acid batteries. These are currently the lowest-cost and most-
used rechargeable batteries in the world9,36. Owing to their low 
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specific energy and energy density, however, they are only more 
cost-effective than Li-ion batteries for low-range EVs (Fig. 5). Also, 
their larger volume and lower cycle life, specific power and energy 
efficiency tend to make them less preferred than Li-ion batteries in 
newer low-cost and low-speed bicycles and vehicles37. Nevertheless, 
Pb–acid batteries have some advantages that make them attractive 
for assistive roles in vehicle electrification. Besides their low cost, 
these include low-temperature operation (as low as − 40 °C)38, bet-
ter charging safety39 and potentially very low self-discharge rates40.

Most work on Pb–acid batteries is thus now aimed at making 
them capable of regenerative brake charging and motor assist in 
hybrid vehicles41,42. This requires batteries that can survive up to 
hundreds of thousands of high-power ‘micro-cycles’ at partial states 
of charge43. A major problem when subjecting conventional Pb–
acid batteries to high discharge rates is irreversible growth of large, 
insulating lead sulfate crystals on the negative electrode, which sub-
sequently harms its ability to accept fast recharges42. Various carbon 
additives were discovered to mitigate this problem by improving 
conductivity, promoting smaller sulfate crystal growth, and intro-
ducing capacitive behaviour to buffer high charge and discharge 
rates41,44. These ‘Pb–carbon’ batteries have shown promise in low-
cost hybrid EV concepts45, and, with further power improvements, 
could be attractive for fully electrified low-cost vehicles with dual 
energy sources.

Nickel–metal hydride batteries. The Ni–MH battery, commer-
cially introduced in 1989, is the most common nickel-based battery 
and offers considerably better performance than Pb–acid batter-
ies across most metrics46. They were the default battery choice for 

hybrid EVs until very recently, and therefore the technology is 
already well-optimized for regenerative brake charging and full-
electric traction43. However, the higher cost of nickel and hydride 
storage metals also makes them more expensive than Pb–acid bat-
teries; in fact, they are now more expensive than Li-ion batteries 
following the latter’s rapid cost reduction9.

Because Li-ion batteries have higher specific energy, energy den-
sity and cycle life, while Pb–acid batteries are cheaper, Ni–MH bat-
teries do not seem to provide any distinct advantages for emerging 
EV markets. However, the aqueous electrolyte and lower-reactivity 
metals used in Ni–MH batteries makes them inherently safer to 
operate, and their better low-temperature performance could make 
them useful for vehicle start-up in cold climates46. Their safer opera-
tion also allows them to be placed in more impact-exposed areas of 
a vehicle, such as the front end, which would be too dangerous for 
lithium-based batteries. Substitution of structural components and 
energy absorption materials with Ni–MH batteries has been advo-
cated as a creative method to reduce vehicle weight, thus offering 
the potential for longer-range EVs34.

Emerging rechargeable batteries
Below, we consider the characteristics of three different emerging 
battery technologies that are commonly envisioned as energy stor-
age solutions for EV applications.

Lithium–sulfur batteries. These batteries have received increased 
attention owing to the 4.5 times higher theoretical lithium capac-
ity and much lower cost of sulfur cathodes relative to typical Li-ion 
insertion cathodes47. Unfortunately, sulfur cathodes have several 
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Fig. 5 | Vehicle cost and cost of additional range as a function of driving range. Curves are plotted for (a,b) mini vehicle (CV =  10,000 US$, MV =  
650 kg, ECEV =  0.0985 Wh km–1 kg–1 (Supplementary Table 1)), (c,d) mid-size vehicle (CV =  25,000 US$, MV =  1,500 kg, ECEV =  0.0777 Wh km–1 kg–1 
(Supplementary Table 1)) and (e,f) semi-trailer truck (CV =  100,000 US$, MV =  24,000 kg, ECEV =  0.0445 Wh km–1 kg–1 (ref. 35). Curves in a,c,e are 
calculated with equations (1) and (2) and are plotted until the battery volume (equation (3)) exceeds a chosen maximum. Curves in b,d,f are plotted by 
calculating the respective tangents of curves from a,c,e. Midpoint values of the specific energy, energy density, energy storage cost and battery system 
overhead ranges (Fig. 4, Supplementary Table 2) were used for each curve.
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challenging characteristics such as high volume change upon 
cycling, low conductivity of the sulfur and lithium sulfide phases, 
and relatively high solubility of sulfur species in common lithium 
battery electrolytes47,48. These issues lead to low cycle life and high 
self-discharge rates, which are both problematic for EV energy stor-
age technologies. Li–S batteries must also incorporate a lithium 
metal anode to provide an appreciable specific energy advantage 
over Li-ion batteries22. Lithium metal anodes have several challenges 
including poor cycle life and fast-charging ability (due to lithium 
dendrite formation and irreversible electrolyte consumption), high 
self-discharge (due to unwanted side reactions) and increased safety 
concerns for both manufacturing and operation21,49,50.

To address the above difficulties, researchers have reported 
electrodes incorporating sulfur intertwined with porous carbon 
or conductive polymer ‘containers’, which inhibit sulfur dis-
solution while accommodating volume expansion, improving 
conductivity and allowing reversible lithium ion migration dur-
ing charging and discharging47,49,51. Regarding the lithium metal 
anode, most strategies to reduce dendrite formation and mitigate 
side reactions involve protecting the anode with a passivation 
layer, coating, separator or solid-state electrolyte50. Developments 
such as these must result in higher cycle life and higher allowable 
currents without sacrificing specific energy and energy density52, 
which has proved difficult as demonstration cells in the litera-
ture thus far have not achieved more than 500 cycles at practical 
charge rates and specific energies51.

The maximum practically achievable specific energy (600 Wh kg–1
cell) 

and estimated minimum cost (36 US$ kWh–1) for Li–S batteries 
would be a considerable improvement over Li-ion batteries, making 
them attractive for all three emerging EV markets discussed earlier. 
But unless their cycle life is substantially improved, Li–S batter-
ies seem to be a poor choice for high-utilization EVs. A consumer 
vehicle that is driven long distances occasionally, on the other hand, 
could be practical because the battery would rarely be subjected to 
full discharge cycles. Very few drivers travel long distances (greater 
than 200 km) necessary to cause deep discharges of moderately 
sized Li–S batteries on a frequent basis7; thus, anxiety over battery 

degradation from frequently driving long distances should be much 
less likely than conventional range anxiety (that is, inability to drive 
long distances). Therefore, Li–S batteries are a strong candidate to 
succeed Li-ion batteries in consumer EVs, because they can lower 
costs and reduce range anxiety at a relatively affordable cost (Fig. 5).

Lithium–air batteries. These batteries offer a further improve-
ment in specific energy and energy density above Li–S batter-
ies owing to their use of atmospheric oxygen to produce power. 
However, their demonstrated cycle life has thus far been much 
lower, with a maximum around only 100 cycles53,54. Improving 
their cycle life has proved difficult because of several issues, such 
as the air electrode clogging from lithium discharge products, 
catalyst degradation from high-voltage charging, lithium metal 
side-reactions from atmospheric moisture and irreversible elec-
trolyte decomposition55,56. In addition, although reliable estimates 
of specific power and energy efficiency are not available for Li–air 
batteries, these metrics are likely to be much poorer than the previ-
ously discussed batteries because of sluggish oxygen kinetics at the 
air electrode57.

Moreover, the maximum energy density of Li–air batter-
ies at an automotive system level has been projected to be only  
384 Wh l–1

system after accounting for equipment to protect the battery  
from atmospheric carbon dioxide and moisture58. This places a 
volumetric limit on the ability of Li–air batteries to enable substan-
tially longer driving ranges than Li-ion batteries (Fig. 6). On the 
other hand, their combined low cost and high specific energy are 
still attractive for long-range and low-cost consumer EVs (Fig. 5).  
Unlike Li–S batteries, however, Li–air batteries would require a 
complimentary high-power battery for practical operation, because 
their specific power is likely to be poor.

Zinc–air batteries. Zinc–air batteries, despite having a lower specific 
energy than Li–air batteries, seem more likely to be used in future 
EVs because of their more advanced technology status and higher 
practically achievable energy density59,60. Rechargeable Zn–air  
batteries were identified as a promising candidate for vehicle elec-
trification in the decades before the emergence of Li-ion batteries61. 
Similarly to Li–air batteries, their poor specific power and energy 
efficiency will probably prevent them from being used as a primary 
energy source for EVs; however, they could be promising when used 
in a dual-battery configuration. They could be combined with high-
power Pb–carbon batteries to produce a low-cost EV62, although 
they would probably need a higher cycle life to provide a long 
vehicle lifetime. Alternatively, they could be implemented as range-
extenders for an EV primarily powered by Li-ion batteries, to enable 
long-range EVs; this makes their short cycle life and low efficiency 
relatively unimportant, assuming that the driver only occasionally 
needs to travel long distances63. Although dual-battery concepts can 
considerably increase cost and complexity64, the inherent safety of 
Zn–air batteries65,66 also makes them well-suited for a dual-battery 
configuration because (like Ni–MH batteries) there are fewer con-
straints in their physical location within a vehicle.

The success of these applications depends on making recharge-
able Zn–air batteries more durable. Improving the cycling stability 
of bifunctional oxygen catalysts and zinc electrodes, while main-
taining high specific energy and energy density, will be necessary 
to achieve greater cycle life67,68. Reducing or eliminating carbon in 
the air electrode69 can also improve the calendar life of Zn–air bat-
teries, because carbon-based air electrodes are subjected to corro-
sion by the alkaline electrolyte70 even when the battery is at rest. 
Carbonate formation within the air electrode pores from carbon 
dioxide in the air, in addition to electrolyte evaporation, are further 
challenges for long-lasting Zn–air batteries. For range-extender 
applications, these problems could be managed with air filters and 
re-sealable air vents71,72.
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Hydrogen fuel cells
Hydrogen is an energy carrier that can be produced from low-car-
bon sources and stored with a high specific energy relative to most 
batteries (Fig. 4). Therefore, hydrogen fuel cells have been targeted 
for their potential to contribute to decarbonization in the transpor-
tation sector73,74. The first mass-produced fuel-cell electric vehicles 
(FCEVs), which use polymer electrolyte membrane (PEM) fuel cells, 
were introduced in 2013–2014 by Hyundai, Toyota and Daimler. 
The advantages of these vehicles relative to current battery electric 
vehicles (BEVs) include higher driving ranges (over 500 km) and 
faster refuelling (3–5 minutes to re-fill the hydrogen storage tank). 
But cumulative FCEV deployments represent a small fraction of 
total EV sales through 2016 (less than 10,000 or 0.5%)75,76, and they 
must overcome several challenges to achieve better market uptake.

FCEVs have higher purchase prices than conventional vehi-
cles, and similarly to BEVs, this is attributed to their electrochem-
ical power supply. The hydrogen storage tank and fuel-cell system 
are the most expensive components because of the inclusion of 
expensive materials and equipment such as platinum, carbon 
fibre, humidifiers and heat exchangers77–79. The cost of nearly all 
these components will decline considerably with increased manu-
facturing volumes, with the main exception being platinum-group 
metal (PGM) catalysts owing to their scarcity. To reach a similar 
total PGM content to ICEVs, FCEVs must reduce PGM load-
ings to about a quarter of their current state-of-the-art levels80.  
This highlights the importance of research efforts to develop 
catalysts with reduced levels of PGMs and improved efficiency  
and durability81–83.

Cost comparisons for BEV and FCEV versions of an electric 
mid-size vehicle and an electric semi-trailer truck are displayed in 
Fig. 7a and Fig. 7b, respectively. The range and cost of the conven-
tional FCEV and the total volume of its energy storage and con-
version system were approximated by adapting equations (1)–(3), 
with the hydrogen consumption efficiency replacing the energy 
consumption efficiency, and the extra mass, volume and cost of the 
hydrogen tank and fuel-cell system accounted for. The resulting 
equations for FCEV range, total vehicle cost and the total volume 
of its battery pack, fuel-cell system and hydrogen tank (the former 
necessary for supplemental power) are provided in equations (4), 
(5) and (6) respectively:
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where MH2(kg) is the mass of stored hydrogen, HCEV (kgH2 km–1 kg–1)  
is the hydrogen consumption efficiency of the vehicle, SEH2(kWh kg–1) 
is the specific energy of hydrogen, MFC (kg kW–1), PFC (kW), CFC 
(US$ kW–1) and VFC (l) are the mass, power, cost and volume of the 
fuel-cell system and MHT (kg), CHT (US$ kWh–1) and VHT (l) are the 
mass, cost and volume of the hydrogen tank, respectively (refer to 
Supplementary Table 3 for details). FCEV costs are less sensitive to 
increased driving range because increasing the range requires only 
increasing the size, quantity or pressure of hydrogen storage tanks, 
which are lighter and less expensive than Li-ion battery packs on a per-
kWh basis. However, the high present cost of fuel-cell systems makes 
current conventional FCEVs more expensive than BEVs for con-
sumer vehicles (Fig. 7a). Previous estimates projected the equal-cost  

crossing point for consumer FCEVs and BEVs to occur at lower 
driving ranges22,84; but the steep decline of Li-ion battery costs in 
recent years and their even lower long-term projected costs have 
increased the equal-cost point. Semi-trailer trucks, on the other 
hand, seem to be well suited to electrification by a fuel-cell system 
rather than Li-ion batteries at most practical driving ranges (Fig. 6b).  
This is particularly true when considering that the additional 
weight of the battery system (required to achieve long driving 
ranges) reduces the total payload that the battery-powered semi-
trailer truck can haul.

Some new FCEVs incorporate a larger Li-ion battery that pro-
vides (i) pure battery-powered propulsion for short-range trips and 
(ii) greater power-assisting to the fuel cell, which allows a smaller 
fuel-cell system to be used85. The range of these plug-in hybrid 
FCEVs may be approximated with equation (7), which we adapted 
from a combination of equations (1) and (4):
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Plotting equation (7) as a function of stored hydrogen mass (other 
parameter assumptions in Supplementary Table 3) results in lower 
vehicle costs and considerably longer achievable ranges, owing to 
the smaller size of the fuel-cell system (Fig. 7a). Using long-term 
projected costs and 800 km of range, a mid-size plug-in hybrid 
FCEV could be US$5,000 less expensive than a mid-size Li-ion 
BEV and US$6,000 more expensive than an average mid-size ICEV,  
making them more attractive to a sizeable portion of US consumers 
(Fig. 2). Hybrid FCEV trucks enabling ranges of nearly 2,000 km are 
also in development86.

A greater barrier to FCEV adoption is the current lack of infra-
structure for hydrogen transportation and distribution74,87. The cap-
ital cost of a hydrogen refilling station (including hydrogen delivery 
or on-site production) can range from 1 to 10 million US$88,89, 
which is much larger than that for an EV fast-charging station (less 
than 0.2 million US$90). Therefore, in the near-term, FCEVs and 
hydrogen infrastructure development are best suited to the high-
utilization commercial vehicle sector, in which a small number of 
strategically located hydrogen stations could service pre-planned 
high-utilization driving routes to justify their high investment 
cost74. At large scales, however, it may be more expensive to upgrade 
the electrical grid to accommodate the charging demands of BEVs 
than to install a hydrogen refuelling network.

Another consideration for widespread FCEV adoption is their 
energy efficiency relative to batteries. The entire ‘green mobile 
hydrogen cycle’, which includes storing energy as hydrogen gas 
through electrolysis of water, compression (and transportation if 
necessary) of the hydrogen gas, and conversion of hydrogen back 
to power in an FCEV, is typically around 25–30% efficient (without 
heat recovery and utilization)74,91. Industrial hydrogen is available 
at present with higher efficiency, albeit with higher carbon emis-
sions92. For comparison, the total efficiency for charging and driving 
a BEV is around 80–85%93, meaning that an FCEV could require 
about 2.5–3.5 times as much energy from the power grid to drive 
the same distance. But the full cost comparison between FCEV and 
BEV operation must include (i) the cost of upgrading the current 
power grid versus building a hydrogen infrastructure and (ii) con-
sideration of how excess energy, required to meet peak demand, will 
be stored during times of low electricity demand. One such study of 
the United Kingdom indicated that an ‘electrification’ strategy rely-
ing only on electricity for powering end-use technologies (such as 
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BEVs) would be around three times as expensive as a ‘full contribu-
tion’ model in which hydrogen is the primary energy carrier for end-
use technologies94. It should also be noted that alkaline electrolysis 
combined with hydrogen storage has the lowest capital costs of any 
other commercialized utility-scale technology, on a per-kWh basis9.

Finally, the durability of PEM fuel cells is an important fac-
tor to be considered for their potential success95,96. Particularly for 
the high-utilization market, a challenge for PEM fuel cells is to 
demonstrate high enough durability to achieve a similar lifetime 
to incumbent ICEVs. Encouragingly, two buses powered by PEM 
fuel cells (one of which uses Ballard’s FCveloCity-HD6 module) 

have recently achieved over 25,000 hours of operation97,98, which is 
equivalent to 4 to 6 years and meets the US Department of Energy 
and Federal Transit Administration targeted lifetime for a fuel-
cell powertrain99. Consumer FCEVs are also near their target of 
5,000 hours of operation100, and plug-in hybrid FCEVs can provide 
greater reliability through optimized power shifting between the 
fuel cell and a larger battery85.

Outlook
Batteries and fuel cells with improved specific energy, energy den-
sity, cost, safety and grid compatibility are necessary to electrify the 
long-range, low-cost and high-utilization transportation sectors. 
Although no technology is suitable for every application, each one 
discussed in this Review can help to enable at least one of the emerging 
EV markets (Fig. 8). High-power Pb–acid (Pb–carbon) batteries can 
supplement a low-power, high-specific-energy battery within a low-
cost EV, while Ni–MH batteries could improve the range of Li-ion-
powered EVs by providing extra energy and simultaneously replacing 
structural or energy adsorption components. Lithium–sulfur  
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(a) mid-size vehicle and (b) semi-trailer truck. Curves are calculated from 
equations (4)–(7) with the variables in Supplementary Table 3. Note that 
the differences between 2017 and 2040 account only for projected price 
reductions, and do not account for specific energy improvements of Li-ion 
batteries nor specific power and efficiency improvements of hydrogen fuel 
cells. Minimum values of specific energy and energy density and maximum 
values for energy storage cost and overhead factors (Supplementary Table 2)  
were used for the Li-ion batteries in each vehicle. The ‘× ’ on each curve 
indicates the point at which the total volume of the battery pack, hydrogen 
tank and fuel-cell system surpasses 300 litres (mid-size vehicle) or 2,500 
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energy battery due to their low specific energy and energy density. 
Nickel–metal hydride batteries, although they have a higher cost and 
lower specific energy and energy density than lithium-ion batteries, may 
be implemented in place of structural or energy adsorption components 
in long-range EVs owing to their safer internal chemistry. Lithium–sulfur 
batteries can offer higher specific energy and lower cost than lithium-ion 
batteries, and are therefore attractive to both the long-range and low-cost 
transportation markets. Lithium–air and zinc–air batteries have similarly 
attractive characteristics for both of these markets, but their relatively 
low cycle life, calendar life and specific power make them better suited 
as range-extenders to be paired with a more durable and higher-power 
battery. Hydrogen fuel cells are a fundamentally different technology 
with decoupled energy and power characteristics, which can make them 
more cost-effective than pure battery-powered vehicles in long-range 
applications. Additionally, the flexibility of hydrogen production powered 
by intermittent renewable energy, low cost of hydrogen storage and quick 
fuelling of hydrogen into FCEVs make them attractive to high-utilization 
transportation markets.
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batteries could completely replace Li-ion batteries to enhance the 
long-range and low-cost EV markets, while Zn–air and Li–air bat-
teries could serve as range-extenders to succeed in these sectors 
as well. Finally, fast-refuelling and grid-compatible hydrogen fuel 
cells are a natural fit for high-utilization transportation, while the 
high specific energy and energy density of hydrogen also make 
them attractive for long-range consumer EVs. Lithium-ion batter-
ies possess the best combination of properties for certain electric 
mobility applications; however, targeted adoption of a diverse mix 
of battery and fuel-cell-powered EVs will increase the chance of  
a full transition to clean, low-carbon transportation.
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